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1. Introduction

If a Boolean algebra B supports a strictly positive finitely additive
measure then B must satisfy the following two standard chain condi-
tions.

The σ-finite chain condition stating that the collection B+ of non-
zero elements of B admits a countable decomposition B+ =

⋃
n<ω Bn

such that no Bn contains infinitely many pairwise disjoint elements.
The σ-bounded chain condition stating that B+ admits a countable

decomposition B+ =
⋃
n<ω Bn such that for every n < ω there is an

integer kn such that Bn contains no more than kn pairwise disjoint
elements.

These two chain conditions were first considered by Horn and Tarski
who asked ([3], p.482) whether they are actually equivalent in the class
of all Boolean algebras. This problem is closely related to the more
well-known problem asking whether a Boolean algebra can support an
exhaustive but not uniformly exhaustive strictly positive submeasure
(see [5]). To see this note that the σ-finite chain condition on B is
equivalent to the existence of a functional ϕ : B → [0,∞) which is
strictly positive, i.e., ϕ(a) = 0 iff a = 0 and which is exhaustive in the
sense that limϕ(an) = 0 for every infinite sequence (an) of pairwise
disjoint elements of B. On the other hand, the σ-bounded chain condi-
tion on B is equivalent to the existence of a strictly positive functional
ϕ : B→ [0,∞) that is uniformly exhaustive in the sense that for every
ε > 0 there is an integer kε such that for every sequence 〈an : n < kε〉
of pairwise disjoint elements of B there must be an n < kε such that
ϕ(an) < ε. Recall that that Maharam’s problem was solved by Tala-
grand [7] who constructed an exhaustive but not uniformly exhaustive
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strictly positive submeasure on the countable atomless Boolean algebra.
Unfortunately, Talagrand’s construction did not solve the Horn-Tarski
problem. This has been done in a recent paper by Thümmel [8] who
besides a number of new ideas used also some ideas from our paper [9]
in order to construct an algebra that distinguishes between the two con-
ditions of Horn and Tarski. As the title of [9] suggests, our paper was
devoted to the distinctions between various chain condition of posets
from the descriptive set-theoretic perspective, a perspective that could
be of independent interest (see, for example, [2]). The purpose of this
note is to complete this line of investigation by proving the following
result.

1.1 Theorem. There is a Borel partially ordered set T (πQ) that satis-
fies the σ-finite chain condition but fails to satisfy the σ-bounded chain
condition.

As the notation suggest we use here another idea from [9], a pseudo-
tree structure π(Q) on the family of all bounded sets of rationales. In
showing that T (πQ) does not satisfy the σ-bounded chain condition
we do rely on the key idea of Thümmel [8] but the subtle difference
is that the arguments of [8] depend on the fact that Thümmel’s tree
(actually a linear ordering) is (ω,∞)-distributive while our pseudo-tree
πQ is not. In order to deal with this we had to introduce another idea,
a suitable Borel topology on π(Q).

We should also point out that there are concrete internal reasons for
dealing with the Borel version of the Horn-Tarski problem. In fact,
they comes from various attempts to provide a positive answer to the
Horn-Tarski problem by induction on the natural rank coming from
the σ-finite chain condition which in the Borel case could perhaps be
subject to various boundedness theorems of descriptive set theory. The
reader interested in this will notice that our decomposition of the Borel
poset T (πQ) witnessing the σ-finite chain condition is not Borel itself,
and in fact cannot be Borel. Yet another motivation for examining the
Borel version of the Horn-Tarski problem could be found by recalling
what happened in the case of the closely related problem of Maharam
[6] about the existence of a continuous strictly positive submeasure on
a given σ-complete Boolean algebra B. Namely, while Souslin algebra
serves as a counterexample to Maharam’s list of conditions1 to guaran-
tee the existence of such a submeasure, in the Borel case her problem
has always a positive answer (see [10]). Finally, we mention that the
following problem suggests itself.

1the countable chain condition and the weak distributive law
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1.2 Problem. Is there a complete Boolean algebra B supporting a con-
tinuous strictly positive submeasure but failing to satisfy the σ-finite
chain condition?

We finish the introduction by reviewing some standard notation and
terminology. Recall, that every partially ordered set P determines
the complete Boolean algebra B = B(P) consisting of regular-open
subsets of P in the topology generated by (−∞, p] (p ∈ P) (see for,
example, [4]). When P is separative, i.e., when p � q implies that
there is r ≤ p such that r ⊥ q 2, then P is isomorphic to a dense
subset of B+. Then incompatibility relation x ⊥ y of P transfers to the
disjointedness relation x∧ y = 0 on B = B(P) and essentially all of the
chain conditions on B = B(P) transfer to chain conditions on P and
vice versa. In Forcing one usually find it more convenient to work with
posets rather than the corresponding Boolean algebras. For example,
the notion of a Borel poset P = (P,≤) is much more natural in this
context as it simply mean that the domain P is a Borel subset of some
Polish space, that the order relation ≤ is a Borel subset of P 2 and that,
moreover, the incompatibility relation ⊥ is also a Borel subset of P 2

(see [2]). The rest of our terminology and notation is quite standard
and can be found in texts like [2] and [4].

2. A topology on πQ

Let πQ be the collection of all bounded subsets of the set Q or
rational numbers that are either empty or have minimal elements. We
order πQ by letting s ≤ t if either s = t or s is an initial segment of
t (in notation s @ t) and such that min(t \ s) exists. Note that πQ is
a partially ordered set whose minimal element is the empty set and
which has the property that for every t ∈ πQ, the set

Pred(t) = {s ∈ πQ : s < t}

of predecessors of t is a countable totally ordered set and the set

ImmSucc(t) = {t ∪ {q} : q ∈ Q, q > sup(t)}

of immediate successors of t is also a countable set. Note that πQ is
an σ-compact subset of 2Q and that ≤ is a Fσ relation on πQ. Given
t ∈ πQ and q > sup(t) let

Bt(q) = {s ∈ πQ : s w t and sup(s) < q}.

2Here, ⊥ denotes the incompatibility relation on P, i.e. x ⊥ y iff there is no z
such that z ≤ x and z ≤ y.



4 STEVO TODORCEVIC

Note that Bt(q) (t ∈ πQ, q > sup(t)) forms a basis for a first countable
topology on πQ. From now on, unless otherwise stated, it is this topol-
ogy on πQ that we would be referring to. For example, the following
set defined using this topology plays an important role in the rest of
the paper,

Sω(πQ) = {S ⊆ πQ : |S| = ℵ0 and |S(1)| = 1},

where for S ⊆ πQ, the S(1) denotes the collection of all x ∈ S that
are not isolated in S with the subspace topology induced from πQ.
Thus Sω(πQ) is simply the collection of infinite countable converging
sequences S in πQ including their limit points lim(S). We shall use the
notation S → lim(S) to indicate this. Note that Sω(πQ) can be coded
as a Borel subset of the Polish space (2Q)N.

3. A Borel poset

Let T (πQ) be the collection of all countable compact subsets K of
πQ with K(1) finite. We order Let T (πQ) by letting K ≤ L if K ⊇ L
and

K(1) ∩ L = L(1).

Note that T (πQ) can be coded as a Borel subset of the Polish space
(2Q)N×N with both order and the incompatibility relations interpreted
as Borel subsets of its square. Note also that T (πQ) has a separative
version (see [1]) which is also Borel. More precisely, the separative
version of T (πQ) is the collection of all functions P : DP → 2 such

that DP is a countable compact subset of πQ with D
(1)
P finite such that

D
(1)
P ⊆ P−1(1) and |P−1(1)| < ℵ0

where the ordering is given by P ≤ Q iff DP ⊇ DQ and Q = P � DQ. It
should be clear that for our purposes here it does not matter which of
the two versions of T (πQ) we analyze. We choose the first one simply
because of the notational convenience.

4. The σ-bounded chain condition

The purpose of this section is to prove the following fact.

4.1 Lemma. The poset T (πQ) does not satisfy the σ-bounded chain
condition.

Proof. Suppose that there is a decomposition T (πQ) =
⋃
n<ω Tn such

that for every n < ω, the family Tn contains no subfamily of size n+ 2
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consisting of pairwise incompatible elements of T (πQ). For t ∈ πQ and
n < ω, and q > sup(t) let

Tn(t, q) = {K ∈ T : (∃s ∈ K(1))s w t and sup(s) < q},

and let ϕn(t, q) be the largest integer k < n + 2 for which we can
find an incompatible subfamily of Tn(t, q) of cardinality k. Note that
ϕn(t, q) ≥ ϕn(u, r) whenever t v u and q ≥ r.

4.1.1 Claim. For all s ∈ πQ, n < ω and p > sup(s) there is t w s
and q ∈ (sup(t), p) such that ϕn(u, r) = ϕn(t, q) for all u w t and r ≤ q
such that sup(u) < r.

Proof. Otherwise, we get an infinite decreasing sequence of positive
integers < n+ 2. �

Using the Claim we can build an @-increasing sequence tn (n < ω)
of elements of πQ and a decreasing sequence qn (n < ω) of rationals
such that for all n < ω

(1) sup(tn) < qn,
(2) ϕn(u, qn) = ϕn(tn, qn) for all u w tn such that sup(u) < qn.

Moreover, we arrange that

sup
n<ω

sup(tn) = inf
n<ω

qn.

Let tω =
⋃
n<ω tn. By (2), for each n < ω, we can choose Xn ⊆

Tn(tω∪{qn+1}, qn) of cardinality ϕn(tn) consisting of pairwise incompat-
ible conditions of T (πQ). Then for each K ∈ Xn we can pick xKn ∈ K(1)

such that xKn w tω ∪ {qn+1} and sup(xKn ) < qn.
Let

L = {tω} ∪ {xKn : n < ω,K ∈ Xn} ∪ {tω ∪ {qn} : n < ω}.

Then L is an element of our poset T (πQ) with unique non-isolated
point tω, i.e., a converging sequence with its limit point, a member of
Sω(πQ). Fix m < ω such that L ∈ Tm. Note that since L belongs to
Tm(tm, qm), we have that ϕm(tm, qm) > 0 and so Xm 6= ∅. On the other
hand, note that by the choice of L we have that

{xKm : K ∈ Xm} ⊆ L \ L(1).

This means that L is incompatible with every element of Xm. Since L
belongs to Tn(tm, qm) this contradicting the maximality of the integer
ϕm(tm, qm) = |Xm|. This finishes the proof.

�
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5. The σ-finite chain condition

In this section we prove the following fact.

5.1 Lemma. The poset T (πQ) satisfies the σ-finite chain condition.

Proof. Fix a well-ordering <w of πQ and an enumeration {qk; k < ω}
of Q. Then for each t ∈ πQ, we can let v(t) denote the <w-minimal
v ∈ πQ such that v A t. For k < ω, let

πkQ = {t ∈ πQ : qk = min(v(t) \ t)}.

Then πQ =
⋃
k<ω πkQ. Note that for each k < ω, the relation v of

end-extension is well-founded on πkQ.
Given K ∈ T (πQ), since K(1) is a finite subset of πQ, we can let

b(K) be the minimal integer b such that K(1) ⊆
⋃
k<b πkQ. Let l(K) =

|K(1)|. The enumeration qk of Q in order type ω gives us a natural
lexicographical ordering of πQ, so let xKi (i < l(K)) be the listing of
K(1) according to this ordering. Then we can pick a sequence 〈qKi :
i < l(K)〉 ⊆ Q of such that qKi > sup(xKi ) for all i < l(K) and such
that BxK

i
(qKi ) (i < l(K)) is a sequence of pairwise disjoint basic open

neighborhoods. Moreover, we arrange that for i, j < l(K),

(1) sup(xKi ) < sup(xKj ) implies qKi < sup(xKj ) and

(2) sup(xKi ) = sup(xKj ) implies qKi = qKj .

Note that the set D(K) = K \
⋃
i<l(K)BxK

i
(qi) must be finite, so we let

d(K) be its cardinality.
For b, d, l < ω and 〈qi : i < l〉 ⊆ Q, let X (b, d, l, 〈qi : i < l〉) be the

set

{K ∈ T (πQ) : b(K) = b, d(K) = d, l(K) = l, qKi = qi for all i < l}.

The following Claim finishes the proof.

5.1.1 Claim. For all b, d, l < ω and 〈qi : i < l〉 ⊆ Q, the set

X (b, d, l, 〈(pi, qi) : i < l〉)

contains no infinite sequence of pairwise incompatible elements.

Proof. Let Kn (n < ω) be a given infinite sequence of elements of
X (b, d, l, 〈qi : i < l〉). We need to find m < n with Km and Kn compat-

ible in T (πQ). Since the sets D(Kn) ∪K(1)
n are of uniformly bounded

cardinality d+ l, by a simple application of Ramsey theorem and going

to an infinite subsequence, we may assume that D(Kn)∪K(1)
n (n < ω)

forma a ∆-system with root D ∪ E. This in particular means that

D(Km) ∩K(1)
n = ∅ for m 6= n and, therefore, that we can concentrate
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on the case d = 0, i.e., the case when D(Kn) = ∅ for all n. For n < ω
and i < l, let

Kn(i) = Kn ∩BxKn
i

(qi).

Then Kn(i) (i < l) is a sequence of pairwise disjoint converging se-
quences that cover the set Kn. Since {xKn

i : i < l, n < ω} is a subset
of the well-founded poset (

⋃
k<b πkQ,v), refining further, we may as-

sume that for all i < l, the sequence xKn
i (n < ω) is either strictly

v-increasing, or it forms an v-antichain.
Suppose, by way to a contradiction, that for all m 6= n, the sets Km

and Kn are incompatible in T (πQ). Then applying Ramsey theorem,
we can find an infinite subset M of ω and integers i, j < l such that
either

(3) xKm
i ∈ Kn(j) for all m < n in M, or

(4) xKn
i ∈ Km(j) for all m < n in M.

Not that in the case (3), we have that xKn
j @ xKm

i , and so in particular

the sequence xKn
j (n < ω) is strictly v-increasing. If for m < ω we take

n(m) = min(M \ {0, ...,m}, then we get xKm
j @ x

Kn(m)

j @ xKm
i , and

therefore xKm
j @ xKm

i . So, in particular, sup(xKm
j ) < sup(xKm

i ), which

by (1) means that sup(xKm
j ) < qj < sup(xKm

i ) < qi for all m ∈M. This,
however, gives us a contradiction since the set Kn(j), being included in
BxKn

j
(qj), can’t contain xKm

i for any m. This contradiction eliminates

the case (3) and so we are left with the case (4). First of all note that
in this case xKm

j @ xKn
i , an so in particular xKm

j (m < ω) is strictly
v-increasing. Let m0 < m1 be the first two elements of M and let

q = min(x
Km1
j \ xKm0

j ).

Then for n ∈ M, n > m1 we have that xKn
i A x

Km1
j and therefore

q = min(xKn
i \ x

Km0
j ). It follows that, in particular, the sequence (xKn

i )

(n ∈M,n > m1) cannot accumulate to x
Km0
j . But this contradicts the

fact that this is an infinite subset of a sequence Km0(j) which converges

to x
Km0
j . This contradiction finishes the proof.

�
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