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Abstract. In this paper we study the time-dependentGinzbug-Landau equation of the

SchiBdinger type in two dimensions. The initial conditions are chosento describeseveral
well-separatedsortices. Our task is to understandhe vortex structureof the corresponding
solutionsaswell ascorrectionsdueto radiation. To this endwe developthe nonlinearadiabatic
theory. Using the methodsof effective actionand of geometricsolvability we derive equations
for the vortex dynamicsandradiation. As an examplewe considerthe specialcaseof radiation

by two 1-vortices.
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1. Intr oduction

The nonlinear Schibdinger equationis one of the simplestequationswhich has particle-
like solutions—solitonskinks and vortices—aswell as wave-like excitations. A general
solution, at least for large times, can be describedin terms of a collection of moving
localized structures—eactof which looks like a particle-like solution centredat some
point—interactingbetweenthemselvesas well as with wave excitations. This leadsto
a rather complex dynamics. It is the goal of this paperto study this dynamicsfor the
nonlinearSchibdingerequation
oy

IS =—Av+ (12— Dy (1.1)

onR2 x R}, whereA is the Laplacianin the spatialvariablex € R? andfor eacht, v (-, 1):
R? — C, and satisfiesthe boundarycondition
[y (x, )] — 1 as|x| — oo. (1.2)

This equationis called the Gross—Pitaevskequation. It comesup in condensednatter
physicsand nonlinearoptics. The steadystateequationcorrespondingo equation(1.1) is
the celebratedGinzbug—-Landauequation,

—AY + (Y1? - Dy =0. (1.3)
It is subjectto the boundarycondition
¥ — 1 as|x| — oo. (1.4)
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Let (r, ) bethepolarcoordinate®f x. Foreachintegern, thelatterequationhasa solution
of the form (modulotranslationsand rotations)

YW ) = £ e, (1.5)

where £™(r) is a uniquefunction monotonicallyincreasingfrom 0 to 1 asr runsfrom 0
to oo (see,e.qg.[BBH, H, OSa]). Suchsolutionsare calledn-vortices.

In this paperwe study equation(1.1) with initial conditionswhich describeroughly
several,say K, well-separated/ortices. A precisedefinition will be given later; for now
we just presentan exampleof suchaninitial condition:

K
Vindepx) = [ [ ¥ (x — a) (1.6)
i=1

with ¢ = mini»; |a; — a;| > 1. The goal of this paperis to understandhe dynamicsof
the vorticesdominatingthe solution ¢ to equations(1.1) and (1.2). We showthatin the
leadingorderin a~* the dynamicsof vortex centresis describecdoy the Hamiltoniansystem

a=JVE(a), .7)
wherea = (a1,...,ax), a; € R?, J is the block-diagonalmatrix with the blocks
1 0O 1), _ 1,...,K, and E(a) is the intervortex enegy introducedin [OSb]

m\-1 0)"' 7
(seesection?2). It is shownin [OSb] that

1
E(a) = XE, + H(a) +o<>, (1.8)
a
where E,, is the properenegy of the n-vortex (seesection2 for precisedefinitionsand a

sketchof the proof of (1.8)) and H (a) is the Kirchoff-OnsagemHamiltoniangiven by

H(a) =—m Zi’lin]’ In |Cl,’j| (19)
i#]
with a;; = a; — a;. Thus,in the leadingorderwe recoverthe Kirchoff-Onsagelaw
a=JVH(a), (1.10)

which waspointedout in [O, CM, G] and derivedusing multiple scaleexpansionn [N].

We amguethatin the nextorderthe contributionis dueto the interactionof the vortices
with radiationproducedy thevortexmotion. We give agenerakstimateof this contribution
and then presentan explicit result in the specialcaseof two 1-vortices. The radiation
phenomenorin this contextseemsot to havebeenobservedoreviously.

To derive (1.7) we developan approachwhich we call the nonlinearadiabatictheory.
It goesroughly as follows (cf [AH, Ma,Stu]). Let S(y) be the action functional for
equation(1.1):

S(p) = / { - / ;lmw@d?waen(w)}dz, (1.11)

where Een(¥) is the renormalizedGinzbug—Landaufunctional (seesection?2). First we
find an approximateminimizer, v,, of Een(¥) underthe constraintthat the vortices are
fixed at positionsas, ..., a, (a1, ..., ar) = a. Next, we allow a to dependon time and
plug ¥4 into (1.11). The resultingaction functional,

Seff(a) = S(¥a), (1.12)
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describeshe dynamicsof thevortexcentresn theleadingapproximationjt is equalmodulo
f/O(na - a~2) dr to the actionfunctional

k
Svort(@) = / { - % anaj Aaj — E(a)} dr, (1.13)
=1

whosecritical points satisfy equation(1.7).

To go beyondthis theory we write ¢ = v, + o, wherea is supposedo be a small
fluctuationfield aroundvy, andexpandS(y) in « up to the secondorder. Critical points
of the resultingfunctional satisfy the systemof coupledequations

daSefi(@) = —VaRe/&a,,-,S(l/fa) (1.14)
§"(Ya)a = —3;S(Va), (1.15)

whered,, standdor thevariationalderivativewith respecto ¢ andS” (y) is the Hessiarof S
aty, both definedin sections2 and4, respectivelyandwherewe droppedthe higher-order
term Va%Re [[aS"(ya)a. In section6 we demonstratehat provided a satisfies(1.7),
one can perturbr, slightly in sucha way that equation(1.15) hasa solution of the order
o = O(a™1), providedr < a” for somep > 0. To this endwe decomposéhe spaceR? into
severalregionsdeterminedby the configurationsa and estimateequation(1.15) separately
in eachregion. We call this method,the methodof geometricsolvability.

The analysisof the previousparagraplcanbe summedup by showingthatthe solution
Y of (1.1)and(1.2)for ¢+ < a? for somep > O for anappropriaténitial conditionis of the
form

Y = Yau + (1.16)

wherev,, an approximateminimizer of £.pn, haszerosatay, ..., ag, a(t) satisfies(1.7),
anda (aswell asV,«) is of orderO(a—1). Thenimplicit function theoremimplies that
haszerosat the positions

a(t) + 0@t

with the correspondingrorticities. Thus, equation(1.7) describeghe vortex dynamicsfor
time up to a? for somep > 0 to aratherhigh precision.
We observethat equationg(1.14)—(1.15)strippedof inessentiatermsread

a=JVH(a)+ 2Va/¢o>'<'
and
(97 — 2A)x = —4go

where y = phasex — ¢ and ¢g(x) = Zlenje(x —aj), 6(x) = polarangleof x. These
equationgdescribemotion of interactingvortex centrescoupledto radiation.

Finally, the dynamicsof vorticesfor the heatequationwasrigorously derivedin [Lin]
and for the abelianHiggs modelin the nearcritical regime,in [Stu] (seealso [AH, Ma,
Sh]). In what follows the time derivative% is often denotedas .
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2. Renormalized Ginzburg—Landau energy

Solutionsof equationsg(1.1) and (1.2) (or (1.3) and (1.4)) are classifiedby the total index
(winding number)of 1, consideredas a vectorfield on R?, at oo, i.e.

1
deg) == — d(amy)

27 Jixj=r

for R sufiiciently large. We call this index (as opposedto local indicesof i considered
below, seeequation(2.8)) the degiee (or total vorticity) of .

It is a straightforwardobservatiorthat equation(1.3) is the equationfor critical points
of the following functional

EY) = %/<|vw|2+ L1y 2 - 172 (2.1)

Indeed.,if we definethe variationalderivative,d, £(y), of £ by

3
Re/g%&wﬁ=ﬁfwn

2.2)
A=0

for any path; s.t. o = v and fj%lA:O = &, thenthe l.h.s. of equation(1.1) is equalto
Iy EW) = 3z E(Y) for E(y) givenin (2.1).

Equation(2.1) is the celebratedGinzbug—Landau(free) enegy. However,thereis a
problemwith it in our context. It is shownin [OSa]thatif v is anarbitrary C* vectorfield
onR? s.t. || — 1 as|x| — oo anddegy # 0, then&(Y) = oo.

We renormalizethe Ginzbug—Landauenepgy functional as follows (see[OSa]). Let
x (x) be a smoothreal function on R? s.t.

1 for |x| > 2
x(0) = {0 for |x| < 1. 23)
Define
Eren(V) = 3 / (WW - (defﬁmzx + F(|w|2>) dx (2.4)
where
F(u) = 3(u— 172 (2.5)

We list herethe mostimportantpropertiesof Een(v) (see[OSa] for the proofs):

(@) 35 Een(¥) = =AY + F'(Y Py

(b) givenn let M, = {¢ = f€¥ | [ ., 511~ f? < oo, f is continuousand f(0) = O,
[1V(p —nd)|rt < oo and [ |V(p — nb)|?> < co}. Then&en(¥) < 00 Vi € M,,.

(c) We havethe following boundfrom below

Eren(W) = 53(0,2)<w)+%/ 2(|V|w||2— ;chr‘) dPx, (2.6)
[x[=>
whereg = amgy, andfor Q c R?,
d 2
Ea(y) = %/ (WW— ( er%”) X +F(|w|2>> dx. 2.7)
Q

It is known that v+ arelocal minimafor n = 0, 1 andare saddlepointsfor |n| > 2
(see[0SaM1,LL]). Moreover,y™ with n = 0, 1 arethe only local minima of Een(¥)
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[M2, CK], while as far as saddlepoints are concernedone expectsthat there are other
solutionsbreakingthe rotationalsymmetry[OSc].
Consideronce-diferentiablefunctionsy: R? — C satisfying || — 1 as|x| — oo.

Leta = (a1, ...,an) andn = (n1,...,n,), wherea; € R? andn; € Z, j =1,...,m.
¢ = (a,n) will be called the vortex configuration We say that ¥ has the vortex
configurationc andwrite confyr = ¢, if ¥ haszeros(only) atas, ..., a, with local indices
ni, ..., n,, respectivelyj.e.

/ d(amgy) = 27n; (2.8)

Vi

for any contoury; containinga;, but not the otherzerosof ¢ andfor j = 1,...,m. Now
we define

E(c) = inf{&en(y) | confyy = c} (2.9)

(cf [BBH], for topologicalvariationalproblemssee[FS]). By property(c) above,E(c) >
—oo0. We call E(c) the enegy of the vortexconfiguratione. It will play a centralrole in
our analysis. Usually, n is fixed during our considerationand we write E(a) for E(c),
c=(a,n).

In [OSb] we demonstratehe following asymptoticexpression

K
1
E(@) =) E, +H(a) +o<>, (2.10)
i—1 a
where E, = Een(¥™), the self-enegy of the n-vortex, and H (a) is the function givenin
(1.8).

We sketchherethe derivationof (2.10). For a completedemonstratiorsee[OSb]. The
upperbound, E(c) < r.h.s.(2.10),is obtainedby choosingan appropriateestfunction, v,
confyy = ¢, andperformingaratherdelicatemany-bodygeometricanalysisin orderto show
that Een(¥) = r.h.s.(2.10). Thenthe bounditself follows from the variationalinequality
E(c) < &en(¥). The function v is describedby the relations

Y =€ +0 (1) : (2.11)

|x —aj|-a

for |x —a;| < a andVj, and

¥ =€% 4+ 0(d(x,a)"?) (2.12)
for d(x, a) > 1. Hered(x, a) = ming |x — al, ¥;(x) := ¥ ™) (x —a;), and
o=y o and  @o=) ¢ (2.13)
ko k] %

with ¢; (x) := amy;(x) = n;6(x — a;), whereé(x) is the polar angleof x.
An example of a function ¢ satisfying (2.11) and (2.12) is the field describing
independentortices

K
Vina () = [ [ ¥ ).
Jj=1

To seethis oneusesthe estimatey ™ (x) = €™ (1+O(|x|~?)). Anotherexampleis given
by a field describingpinnedvortices(e.g. solving equation(2.20) below), describedbelow.

The geometricanalysismentionedabove consistsof breakingup the integralin (2.4)
into a sum of the integralsover the disks D; = {x € R? | |x — ajl <ro}, j=1,...,K,
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with 7o = O(a) but <« a andthe integral over the restof the spaceD, = R?\ Uj D;, and
estimatingit separatelyin eachD;, j =0, ..., K, using(2.11)and(2.12).

In order to prove the lower bound, E(¢) > r.h.s. (2.10), we introduce the enegy
functionalincorporatingdefectswhosepurposeis to pin the vorticesdown:

EX(W) = Er(Y) + T34, f 8, 1V 12, (2.14)

whereA = (A4, ..., Ag), A; > 0, arecouplingconstantof the defectsands,, > 0 aretheir
potentials,centredat pointsb; € R2. We take s, to be either

1 _
B = 5 =8(lx — bl = 7). (2.15)

wherer = O(1), or a smoothversionof this, i.e. §, is a smoothfunction supportedn the
annulus

{x e R¥F < |x — b| <7 + 68} (2.16)

for somesufiiciently small § and satisfying

/ 5y =1 (2.17)

The b;'s arechosento be dependenbn a andat the distanceO(1) from but very closeto
the aj; 'S.

With the potentials, definedasaboveit is arguedin [OSb] that£x () hasa minimizer
amongfunctionswith the given vortex configuration(a, n), provided

A = CIV, E(a) (2.18)
for an appropriateconstantC = O(1). Takingx = O(a—%) > constantV E(c)|, we obtain
E(c) > inf{Ex(Y)|confy = ¢} — C -a L. (2.19)

Now the minimizer, v, of the variational problem on the r.h.s. satisfiesthe Euler—
Lagrangeequation

—AY + ([Y]? = Dy = —Z8, . (2.20)

An elementarybut somewhatlengthy analysisof this equationshowsthat its solutions
satisfyestimateq2.11)and(2.12),i.e. arein the classconsideredefore. Therefore

inf{Ex(Y)|confy = ¢} =r.h.s.(2.10).

This relation togetherwith equation(2.19) implies the desiredlower bound; the latter in
turn togetherwith the upperboundmentionedaboveyields (2.10).

Oneof theresultsdescribedabovestatesthatif afield v satisfiesestimateg2.11)and
(2.12),then

Eren(Vo) < E(a) +O0(a™). (2.21)

We conjectue that the oppositeis alsotrue: if o satisfiesinequality (2.21) (or a slightly
strongerinequality) then vy satisfiesestimateq2.11)and(2.12).
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3. Nonlinear adiabatic theory

Considerequationg1.1) and(1.2) with initial conditionsy|;,—o = ¥ havinga givenvortex
configurationcg = (ag, n) With ag = min|ag; — ag;| > 1 andof low enegy:

Eren(V0) < E(ag) + O(agh). (3.1)

We canthink aboutthe solutionsys asdeterminedby two typesof motion: a fast motion
aroundvortex centres(with velocities~ |V ) (xq)|, |xo| &~ 1) anda slow motion of the
vortex centreshemselvegwith velocities|V,, E(a)|). This suggestshe useof anadiabatic
approximation.In this approximation at the first stepthe vortex centresare frozenandthe
lowest enegy is found underthis restriction. This enegy is, of course,a function of the
positionsof vortex centres. On the secondstep, this enegy is usedas a Hamiltonianfor
the motion of the vortex centres.

Specifically, let v, be a differentiable family (dependingon a) of approximate
minimizersof variationalproblem(2.9), s.t. ¥4, = Y. Their enegy is

Hi(a) = Eren(Va)- (3.2)
Usethis enegy asthe Hamiltonianfor the vortex centres

a(t) = —JVHi(a(1)), (3.3)
where J is the samesymplecticmatrix asin (1.7), with the initial condition

a(0) = ag, (3.4)

thevortexconfigurationof theinitial condition,r, for (1.1)and(1.2). Solveequationg3.3)
and (3.4) andform the adiabaticorbit

PRI — - (3.5)

We will show below that 29 solvesequation(1.1) to the order O(a—2). Moreover,
we derivethe estimate

suply(x, 1) — 24, 1| < Ca™, (3.6)

providedr < a? for somep > 0. We amue also that this estimatecannotbe improved
beyondO(a~2). Indeed,the correctionto y2% which is of the orderO (%) describeghe
processof radiationby the systemof moving vorticesandthereforecannotbe incorporated
into 2912 (seesection6).

Functions(3.5) are the main object of the adiabatictheory while the justification of
inequality (3.6) or a variantof it is its main goal.

Initially thereis unwelcomearbitrarinessn the constructionabove: the choice of the
family ¢, is notunique. However,aswith thevariationalprinciple, this arbitrarinessllows
us a certaindegreeof flexibility. Moreover,dueto (2.10), at leastfor the v,’s satisfying
(2.11)and (2.12), different £(y,) differ by O(a~1) andthesedifferencesare absorbedoy
radiative excitations(seesection4).

We point out that convenientchoice of the family v, usedin (3.2) is provided by
the minimizer for the enegy functional (2.14) for pinned vortices amongfunctions with
confyr = ¢ (see[OSb] for more details).

The origin of the nonlinearadiabatictheory can be gleanedas follows. The actionfor
equation(1.1)is

S() = / (— 3 / Imw$+&enw>) dr. 3.7)
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In order to find approximatestationary points of S(y) we first find an approximate
minimizer, v,, of the potential part Een(y) for the vortex centresfrozen at a (so that

dy Eren(¥a) is very small,in fact O(a—?)). Thenwe allow a to be time dependenand plug

Ya( INto the Lagrangianto obtainthe effective action

Set(@) := S(Ya). (3:8)
The theorembelow showsthat modulo [ O (411¢) dr

a

Seff(a) = f <— %Zn,a, Aaj+ Hl(a)) dr. (39)

Equation(3.3) is an equationfor stationarypoints of the actionon ther.h.s..

Theorem 3.1. Let yo be a field satisfyingestimates(2.11) and (2.12) (so confyn = ¢,
c = (n,a)). ThenS(Yo) = r.h.s.(3.9) modulo[O(“'%) dr. Moreover,the latter error
can be presentedas an explicit term of that order plusa term [ O (g) dr.

A proof of this theoremis givenin the appendix.
The nonlinearadiabatictheoryis justified in sections4—6.

4. Effective action

In order to justify the nonlinearadiabatictheory we presentthe desiredsolution, v, as
¥ = Vo + o, Wwhereq is a small fluctuation aroundthe field ,. Expandingthe action
S(y) aroundyr,, we find moduloO(«®) that

S(¥) = S(¥a) + Re // @0y S(¥q) + 3Re // as" (Ya)a. (4.1)

Here S” () is the Hessianof S or the linearizedoperatorof (1.1) computedat v,; it is
definedby the relation

82
Re / f 57 ()E = 58

wherey,, = ¢ + A& + un.
Ther.h.s.of (4.1)is afunctionalof a(¢) and«. Critical pointsof this functional satisfy
the equationgherewe drop the term VG%Re [aS"(Yq))

)

A=u=0

0aS(Va) = —VaRe/&alpS(lﬁa), (4.2)

S"(a)a = =358 (Va). (4.3)
The coupling betweenthesetwo equationds weak. Indeed,we havethe following.
Proposition 4.1. If v, satisfieg2.11)and (2.12)and a(t) obeysequation(1.10),then

35S (a) = O(a™?). (4.4)

Proof. First we remarkthat

3 SW) = =AY + (¥ > = Dy — iy (4.5)
Applying to ther.h.s.equationg2.11) and (2.12), we obtain

35 S(Wa) = i€ (2VY; - Vo)) + ¢;) + O(@™?). (4.6)
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Sincey; = —Vy; - a; and,by equation(1.10),d; = 2Ve(;)(a;), andVy; = O(|x — a;| ™),
we concludethat

2V - Vo) + ¥ = 2V5(x) - (Vo) (x) — Vo) (a)) = Oa™?). U

The propositionabovesuggestsve set,in the leadingorder,ther.h.s.of (4.2) and(4.3)
to zero. This resultsin equationg3.3) anda = 0. In the next approximationwe plug the
solutionto equationg3.3) and(3.4) into ther.h.s.of (4.3), solvethe resultingequationand
plug its solution togetherwith the mentionedsolutionto (3.3) and (3.4) into the r.h.s. of
(4.2). The solution of the resultingequationtogetherwith the solutionto (4.3) mentioned
aboveyields the next approximationto a(¢) and«, andso on.

Equations(4.2) and (4.3) suggesthat « = o(1). This conclusionis confirmedin the
nexttwo sectionsby analysingmore carefully equation(4.3).

The natureof the fluctuationfield «, in generaljs rathercomplicated.For dist(x, a) «
a?, a is essentiallyadiabaticwhile for dist(x, a) > O(a?), « is aradiationfield. Indeed let
AS bethe sumof thelasttwo termson ther.h.s.of (4.1), the only termscontaininge. For
dist(x, a) < a?, thetermslm (@ -&) andgg|a|? areof a higherorderthan,say,2¢goRe(V,0)
and thereforecan be droppedfrom AS. Moreoverwe candrop the term Im [ %(&aa),
which is constantunderthe variations. The resultingactiondoesnot containg. It leadsto
an elliptic equationfor «. This equationis studiedin the next sectionwhereit is amgued
thatit producesa uniquelocalizedsolutionof orderO(a—1).

Considernow the domainD = {x € R?|dist(x, a) >> a}. Sincein D

ol = 1+ O@d(x, @)™, 4.7

it is convenientto incorporate|yo| — 1 into the fluctuationfield and considerfunctions of
the form

v = é((ﬂo-ﬂ()(l —£) (4.8)
with 0 < & < 1. Now we plug this expressionnto AS(y) and omit the termsdepending
exclusivelyon go andits derivatives the term fOT Jp, X Which is constantundervariations
andthe term [ [, Vo - Vx = [y [,, %y determinedby boundaryconditions. As a
resultwe arrive at

a5 =14 [ [ ik ~ 256+ 19x+ 2 (4.9)

wherewe havealso droppedthe termsgo£2, and|VE|? comparedwith the term 252, The
variationwith respecto &£ leadsto the constraint

£ = 3(go+ %) (4.10)
which we usein orderto exclude¢ from (4.9). As a resultwe arrive at the following
correctionto the action Se(a) = S(Yg)

AS(a,x>=// 132 4 VX2 4 2iiox — 6D). (4.11)

The lattertermis an actionfor a radiationfield x andits couplingto the vortex dynamics.
Combining this term with the action Ses(a) andignoring termsof the form AS(a) with

higherordercorrectionsto S,o1t(a) = r.h.s.(3.10) which leadto standardcorrectionsto the
vortex law, we arrive at the following variationalequations:

a = JVH(a)+ 2/ N (4.12)
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and
(397 — A x = —2o. (4.13)

Thesearecoupledequationdor motion of the vortex centresandradiationproducedby this
motion. They are idealizationsof more preciseequationg4.2) and (4.3).

5. Method of geometric solvability

In this sectionwe analyseour main equationfor the fluctuationfield a—equation(4.3). We

presenanargumentthate = O(a~1). We solvethis equationin thedomainsdist(x, a) < ro,

r1 < dist(x, @) < R; anddist(x, a) > Ry, wherer; < r, € a <€ Ry < Ry, separately.
First we write out the operatorS”(y,) enteringthe l.h.s. of (4.3) explicitly

S" (Yo = —id — Aa + (2Yal? — Da + Y2a.

For simplicity we take v, of the form v, = fo€%, where fo = |¥,| and o, recall, is
definedin (2.13). Consequentlywe look for « in the form

a = €.
Thenequation(4.3) reducego the following equationfor n
—in+ L(n) = F, (5.1)

whereF = e*iwoa¢ S(y,) and L is the operatorgiven by
L(n) == (A + ¢o — 2iVeo - V)1 + 2 fgRen

with ¢o = ¢o + [Veol® + f§ — 1.

Our goal is to demonstratéhat for a(t) satisfyingequation(3.3), ¥, canbe adjusted
by an O(a—2) termin sucha way that equation(5.1) hasa unique,modulo zero modesof
L, solution (for any appropriatenitial condition) satisfying

n=0(@™),

provided: < a” for somep > 0. In this sectionwe considerthe first two domainswhile
the third oneis treatedin the next section.

(@) D' = {x € R?(dist(x, @) < ro}, ro < a. Thepoint hereis thatin this domainwe can
neglectthe term —i». Indeed,the time differentiationis of the order O(a—?) so we throw
—in into the O(a—?)-error basket. Thenthe resultingequationis

L(n) = F. (5.2)

First we notethatthe operatorL, aswell asthe operatorghatfollow, is self-adjointin
theinner-product

(n.£) = Re / ie. 5.3)

Next we find the (near) zero modesof L and show that we can arrangeby a small
adjustmentbof the v, for the inhomogeneity,F, to be orthogonalto thosemodes. By the
nearzeo modesve understaneigenfunctionsvith eigenvalue®f o(1) on the scaleof a 2.

Note that D’ is the union of the disks D; centredat a; and of the radiusro. We show
thatin D;, L is unitary equivalentmodulo O(a~2), to the linearizationoperator,

Ly (@) = (=A+21y;> — Da + yla, (5.4)

for the time-independenGinzbug-Landauequation,equation(1.3), aroundy;. Note that
apartfrom the trivial shift x — x — a;, the operatorsL,, areindependendf a.
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Lemma 5.1. If a(z) satisfiesequation(3.3), thenin D;

L=L;+0(?), (5.5)
whete the operator L; is definedby
Li(n) = (=A+|Ve;?+ f7 —1-2iVg; - V)n + 2fRen. (5.6)

(Notethat apart fromthe trivial shift,x — x — a;, the operatorsL; are independentf a.)

Proof. Usingthata;, = O(a~') we computein D;
do = |Vg;I® + f7 — 14 2Vg; - Vo) + ¢; + O@™?).

Due to therelationg; = —Vy;, - 4;, equation(3.3) andthe estimateVy; = O(jx — a;|™1),
we have
2V, - Vo) + ¢ = 0. (5.7)
The lasttwo estimatesyield
¢o = |Ve;[* + f7 — 14 0@@?) (5.8)
in D;, so (5.5) follows. O
The last lemma statesroughly that L is an O(a—2)-perturbationof the direct sum
k
EB_,‘:l L;. . .
Now the operatorsL; are unitary equivalentto the operatorsL,,

Li(n) = e Ly (). (5.9)

It is shown in [OSa] that the only zero modesof the operator L, (this operatoris
independenif a and thereforehas no near zero modes)are those due to the breaking
of the gauge symmetry, a(()j) = iy;, and the translationalsymmetryaij) = d,v; and
o’ = 9,,¥;. Dueto (5.9), the only zeromodesof L; aren! = e %o, k = 0,1,2
(againL; hasno nearzeromodes). Sincer§’ doesnot decayat co andn{” andny’ are
‘essentiallyproportional’ (see[OSa] for details)it sufficesto consideronly nij).

Dueto (5.5), the zeromodesof L;, j = 1, ..., k, leadto nearzero modesof L with
eigenvalue®f orderO(a—2). Thesearethe only (near)zeromodesof L. Denotethe (near)
zeromodesof L correspondingo nij) by n/). They arelocalizedessentiallyin D;. Now
the solvability conditionsfor equation(5.2) read (rememberthat L is self-adjointin the

inner-product(¢, n) = Re [ &n)
Re/ 7Y F =0, (5.10)

j=1,...,K. SinceF = O(a~?) andn’/ = O(1), an O(a—?) changein the original, input
functiony, sufficesin orderto satisfythis equation.(Hereonecanuseanimplicit function
theoremin orderto find sucha correction.)

To sum up, we identified explicitly the near zero modes of the operator L in
equation(5.2) and argued that by an O(a—?) perturbationof the input function v, the
inhomogeneityF can be broughtto be orthogonalto those modes. Moreover, L is an
O(a~?) perturbationof the directsum,@le L;, of a-independenbperators.SinceL; are
unitarily equivalentto L, their zeromodesareexplicitly known, they give rise to the near
zeromodesof L. Moreover,L; > 0if n; = 1 (see[OSa]). SinceL is definedon the
union of disks, D;, of radiusro, genericallythereis a gapof orderO(ro‘z) betweerthe near
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zeroeigenvaluesandthe restof the spectrumof L. As aresultequation(5.2) hasa unique
solution, n, orthogonalto ™, ..., n®, andthis solutionis at leastof the order

1=0(%) (5.11)

We believethat a more carefulanalysisbasedon consideringasin the next paragraphthe
equationdor the real andimaginarypartsof n separatelyields the estimate

1
n=0 <c12> )
providedry < a/(Ina)?.

(b) D" = {x € R?|r; < dist(x,a) < R1}, 1 < a < R;. This is a ‘transitional
domain.Let n = n1 + in2. In D”, we cansolve equation(5.1) for n; approximately:

K
m Y Vi) (Vg a) — Ve () + 0@ + 0@ ). (5.12)
j=1
Herethe leadingtermis of the orderO(a—?). Thuswe have

= 0@ ?. (5.13)
Now the equationfor 7, reads
(—A+ Vool + fE = 1+ ¢o)ne = 01+ 2Veo - V1 + fo+2Veo- V fo. (5.14)

Sincethe ¢-derivativeis of order O(a—2) andthe x-derivativein D”, of orderO(r~1), we
concludethat the r.h.s. of (5.14)is of order O(r—2a—2). On the l.h.s. we haveasin the
proof of lemmabs.1

K K
IVool? + f§ =1+ g0 =D (V> + fF =D+ Y (& +2V¢; - Vo)) + Ola™)
j=1 j=1

Vi (x) - (Vo (@) — Vo (x)) + 0. (5.15)

I
N
~
[~

—1

The leadingterm on the r.h.s.is of the order O(a~?) andis essentiallyjhomogeneou# a
of degree—2. If we rescaleequation(5.14) asx — a’x, thenwe arrive at an equationof
the form

(—A + V(x)nEseaed= O 2a72) (5.16)

ona~1D”, with the potentialterm V essentialljindependenof a. The operator—A + V (x)
ona~1D” hasa discretespectrumwith the gapsof orderO ( ) Sofor genericV (which

is fine with us since the input function v, can be adjusted)thls equationhas a unique
solution of the order O(R?a~2r;?). Thuswe concludethat at least

n = O(R?a™%r[? in D”. (5.17)
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6. Radiation

In this sectionwe considerequation(5.1) or the full equation for the fluctuationfield » in
the domain D" = {x € R?|dist(x, a) > R,}, R1 > R > a, i.e. in the domainwherewe
expectradiationto take place. This radiationis causedby moving vorticesas was briefly
pointedout in section4.

We could start with equation(4.3) or (5.1) but insteadwe derive relevantequations
from scratch,reproducingthe conclusionarrived at the end of section4. The discussion
in section4 showsthat the phaseof ¢ dominatesat large distancesso we derive first an
equationfor it. Let f = || andg = argy sothaty = f€¢. Thenequation(1.1) implies
the following equationdor f and¢

. A

—<p=—ff+|V</>|2+f2—1 (6.1)
and

f=—A¢f —2Vg V. (6.2)
Solving the first of theseequationsfor f2? as

1

fP=1- |V¢|2—¢+7Af (6.3)
and substitutingthe resultinto the secondequation,we find

¢ —2Ap = F, (6.4)
where

dp 1 0 1
F=-2Vp-V||Vol?+ = - ZAf) - 21— fHAp — —(IVe? = ZAf). 6.5
¢(|<p|+atff) ( f)(pat<|<pl ff> (6.5)

We solve equation(6.4) by perturbationtheory. We look for ¢ in the form

©=wo+ X, where, recall, go = Zn_,-@(x — a;(1)) (6.6)

J

with #(x), the polar angle of x € R?, and a(r), the solution to (1.10) with the initial
conditiona(0) given by the vortex configurationof theinitial conditionfor the Schiddinger
equation(1.1) (seeequation(3.4)). Since Ago = 0, we have

X —2Ax =—¢o+ F. (6.7)
To estimateF we plug in ¢ for ¢ and fo for f into ther.h.s.of (6.5) to obtain
F=03a1). (6.8)
On the otherhand,we compute
K . K .
. (x —aj) NG 2 -2 X Aaj -2 -2
@O:;I’ZIW +O(V a ):;an—FO(r a ) (69)

In passingto the last term on the r.h.s. we haveused|x| > |q;|Vj. Sincethe centreof
vorticity, Xn;a;, is conservedn our approximationwe havexn;d; = 0 andtherefore

$o = O(r—2a=?). (6.10)
Thus F canbe droppedfrom equation(6.7) andwe arrive at
X —2Ax = —go (6.11)
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with zeroinitial conditions. Note thatthis equationalsofollows from varying action(4.11)
with respecto the field .

We ignore the boundaryconditionssincethey contributehigher-ordettermsin a—*

We claim now thatwith = = ¢/R?

X = O<(In ?2). (6.12)

a

Indeed,rescalingequation(6.11)asx — y = fR
function methodto the resultingequation,we find

x"®€=—-Gxh, (6.13)

andr - 7 = 2 andapplying Green’s

where "¢ and ¢*s¢ denotesy and ¢, rescaledas indicated,r = R2${*C, x denotesthe
convolutionin y andt, and G solvesthe equation

82
(312 - A) G = 8(0)5(y)

with the causalityconditionthat G = 0 for t < 0. It canbe found explicitly:

G(r,y)=—2=r (6.14)

o /.[2_102’

wherep = |y| andy,>o = 1if r > 0and= 0if t < 0. Sinceh = O(a~2p~?), we estimate

d2 "ds
resq < ¢ 6.15
™ ff/ V1252 — A2 (.19

[Ay|<s,ly'|>1
0<s<t

whereAy ==y —y'.
Firstwe let p > 27. In this case
Y] = |yl = Ayl = 30
Sothe triple integralon the r.h.s.,which we denoteby 1, is estimatedas

*ff o’z " \/lelz Byr ff < constant (6.16)

Herewe madethe changeof the variableof integrationasy’ — z =y — y' = Ay.

Now we let p < 2r. We decomposehe triple integral I into the sum of the three
integrals, I1, I, and I3, definedby the following additional restrictionson the domain of
integration:

s<Lis>1 Ay < 3s and  |Ay| >35> 3,

respectively.Since|y’| < |y| + |Ay| < 3z, thefirst integralis estimatedas

d2 ’
/ / 5 / < constant (6.17)
|y | [Ay| |Z§y|

Iy |<8r

For the secondintegral we obtain inequality

/ ds / < constant(In 7). (6.18)
1<|y'|<3¢ |y |
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Finally, the third integralis estimatedasfollows

dzy/ 2|Ay| ds
I3 < / —— < constantin . (6.19)
w<tyi<ae Y12 Jiay /52— |Ay|2
Collecting estimateq6.17)—(6.19)we arrive at the inequality
I < constant(In 7). (6.20)

This togetherwith (6.16) showsthat estimate(6.20) alwaysholds, which, in turn, together
with (6.15) implies that

|x"%9 < constanta=2 - (In7)2.

Thus(6.12) follows.
On the otherhand,equationg6.3) and (6.6) imply that

1- f2=0(R;% < Ixl. (6.21)

which justifies our ideathat the phaseplaysa dominantrole in the radiationprocess.
By the definition of n (seethe beginningof section5), n = fe™'* — f,. Henceestimates
(6.12) and (6.21) imply thatfor ¢+ < a” for somep > 0

n = 0(a"?(Ina)?) in D" (6.22)

Combining estimateg5.12), (5.18) and (6.22) and settingrog, r1 < /Ry and Ry, Ry < a,
we arrive at the estimate

n=0(@a"), (6.23)

which, due to the relation ¢ — yadiab — dvoy implies (3.6), provided: < a” for some
p=0.

7. Solitary wave

1

Equation(6.4) (or equations(6.1) and (6.2)) has, in a leadingorderin -, also a solitary

wave solution. Indeed,retainingin (6.5) only leadingterms,we obtain

92 B Ay 1 92
— —2A)p=—-2—|Vp]?P—2—"Agp— = —
(aﬂ >¢ a:' ¢l or T 202

This equationhasa solutionof the form ¢(x1 — vt), wherea(z) = g—w satisfiesthe equation

Ag. (7.1)

2

(v? — 2)a = 3va? — %a”. (7.2)
This equationwith theboundaryconditionse — 0 asz — +oo is equivalentio the equation
2
0% — 2)a? — 2va° + %((x')z -0, (7.3)
whosesolutionis
A
oO=——73—, (7.4)
coslt Bz
where
2— 2 2 — 2
2
= and A= . 7.5
p 202 2v (7:5)

Equations(7.1) and(7.3) arevalid only for
0<vV2-v<«l
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8. Radiation by two 1-vortices

The purposeof this sectionis twofold. On one handwe describethe radiation and its
effect on the vortex motion explicitly in the simplestcaseof two 1-vortices. On the other
hand, it is the first stepin understandinghe large time vortex dynamicsin R?2. Indeed,
aswe arguedin the previoussectionmoving vortices,in general,radiate. As a resultthey
losetheir enegy so that vorticesof samesign move apartfrom eachother, while thoseof
oppositesigns move closer (and eventuallycollapseonto eachother). So the questionis
how the dynamicslooks asymptoticallyand the naturalguessis that it is a superposition
of simple motions of well-separatedortices, the simplestof which is consideredn this
section.

In this sectionwe describethe resultsand someof the ideasof their derivation. The
detailsaswell asa treatmentof the dynamicsof the vortex—antivortexsystemare givenin
the companionpaper[OSe].

We considerequation(1.1) with aninitial condition describingtwo 1-vorticesat the
distance2a >>> 1 from oneanother.(Notethatwe changecherethe definition of « compared
with the previoussections:a — 5.) Thenin the adiabaticapproximationequation(1.10),
the vorticesrotatearoundtheir ‘centre of vorticity’, %(1 car+1-ap) = %(al + ay), with the
frequency

1
w = —2. (8.1)
a
Sincethe centreof vorticity is conservedinderthe evolution(1.7),
anaj (t) = constant (8.2)

we can placeit into the origin, so thata; = +a, and can be written, modulo a constant
phaseshift dueto the initial conditions,as

a1, = ta(coswt, Sinwt). (8.3)

Next we considerthe equationfor the radiation,equation(6.11). Using (8.3) and definition
(6.8) of o, we obtain

a? —r?cos2(0 — wt)
a*+r4 — 2r2q2cos2(60 — wt)
Thusthe phasey satisfieswave equation(6.11) with a sourcein the r.h.s.which depends
onr, a, 6 andt, only in the combinations‘j—z andcos2(6 — wt) andis a periodicandeven
function of the secondvariable. Sucha sourcegeneratesa wave which for r > 1 hasthe
form (see[OSe])

(rw)Y2wa? T

plus higher harmonicswith the nth harmonicbeing of the order O (/% (wa)?"). Thenthe
enegy-conservatiorlaw implies that the distance,2a, betweenvortices mustincreasein
time.

In orderto find the dependencef a = a(r) ont we computethe average(S,) of the
enegy flux density,

@0 = 2d%w (8.4)

overthe period, Z, of the adiabaticmotion of the vortices. Using (8.5), we find
T X
(Sy) (8.7)

T 248 |x|2



The Ginzbug—-Landauequationlll. Vortex dynamics 1293

Thenthe enegy conservatioriaw

0
Sy, 8.8

5 |en= s, (3.8)
wheree(y) = E|V1ﬂ|2 + (1|2 — 1)?, the enegy density,implies that

da T

o= (8.9)
Integratingthis equationwe find

a()® = a(0)°+3r(t — 1o), (8.10)

i.e. a(r) growswith time as (3m)?1s. See[OSe] for more details.

Acknowledgments

The authorsare grateful to Weinan E and StephenGustafsonfor useful discussionsand
to the refereefor the very prescientremarkswhich led to an improvementof this paper.
Researcton this paperwas supportecoy NSERCundergrantNA7901.

Appendix. Proof of theorem 3.1

Althoughonecananalyse/ Im (1//0&70) usingestimateg2.11)and(2.12)directlyit is simpler
to usethe polar representatiorior . Let f = |y and¢ = amgy sothaty = fev.

Then
—/mum&w=%/f%=%/¢—%/u—f%¢ A1)

Here [ ¢ is understoodas limz_, fm@ ¢. Proceedingaswith the estimationof E(a) in
[OSb] (by decomposindhe integralover disks, D;, of the radii ro aroundthe a;’s andover
the restandusing (2.11)in D; and(2.12),in R?\ U. D;), we obtain

f(l f )(p——nann a]k/\l e Inlajkl—i-ZO( ) (A.2)

J#k
wherea;, = a; — a anda A b = a1by — asb.
In the first term on the r.h.s. of (A.1), we replaceg by ¢o since [ %(fﬂ — o) does

not changeundervariations. Thenwriting ¢o = —XVy; - ¢; and choosingin the integral
[ Vo; - a; - d°x the xq-axis alonga;, we compute
1 R
— @0 = ——a; N a; / I(r)rdr, (A.3)
2 ~/|.ng Z 2| | ! / 0

2 r CoSH—|a; |
2+a272r\a, | cost

wherel (r) = dg. Next, we find

2 2

1 . 5 d
1) = ~ 2ilaj| {an i r|“./|raj % (Z— cf)Z(Z_ {:’)]

0 if > l|a|
= [ 2 _ (A.4)
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The lasttwo relationsyield

1 . b4 .
5/(,00:—5 ;njaj/\aj. (A.5)
Combiningthis with equationgA.1) and (A.2) andtakingthe R — oo limit, we arrive at
- T .
- [moio =3 Xy (A6)

modulo Zj;ék 0] ('T;f;f'ajk). This togetherwith the relation Eren(¥o) = Hi(a) yields

S(Wo) = f (—gznjaj Aa —i—Hl(a)) dr. (A7)
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