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Abstract

We review some basic notions, results and techniques in non-relativistic quantum electro-
dynamics (QED). The review is based on joint work with Volker Bach and Jürg Fröhlich and
with Walid Abou Salem, Thomas Chen, Faupin, and Marcel Griesemer. References to these
and other contributions will be given at the end of these notes.

The sections marked with ∗ did not appear in the original presentation.

1 Overview

I will describe mathematical theory of the non-relativistic QED. This theory was developed in the
last 10 or so years.

It deals with quantum-mechanical particle systems coupled to quantized electromagnetic field at
the energies ¿ mc2 (the rest energy of electron).

Sample of results it addresses are

• Stability;

• Radiation;

• Renormalization of mass;

• One-particle states.

We translate some of the physical notions above into mathematical terms:

• Stability ⇐⇒ Existence of the ground state;

• Radiation ⇐⇒ Turning of the excited states of particle systems into resonances, Scattering
theory.

One of the key notions here is that of the resonance. It gives a clear-cut mathematical description
of processes of emission and absorption of the electro-magnetic radiation.

The key and unifying technique I will concentrate on is the spectral renormalization group. It
is easily combined with other techniques, e.g. complex deformations (for resonances), the Mourre
estimate (for dynamics) and fiber integral decompositions and Ward identities (for translationally
invariant systems).

The techniques used here extend to analysis of existence and stability of thermal states.
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2 Non-relativistic QED

2.1 Schrödinger equation

The starting point of the non-relativistic QED is the time-dependent Schrödinger equation with

i∂tψ = Hψ,

where ψ is a differentiable path in the Hilbert space H = Hp ⊗Hf , which is the tensor product of
the state spaces of the particles (Hp, say, Hp = L2(R3n)) and of the quantized electromagnetic field
(Hf = Bosonic Fock space), and H is the standard quantum Hamiltonian on H = Hp ⊗Hf , given
by

H =
n∑

j=1

1
2mj

(i∇xj
− gA(xj))2 + V (x) + Hf .

Here mj and xj , j = 1, ..., n, are the particle masses and positions, x = (x1, . . . , xn), V (x) is the
total potential affecting particles g > 0 is a coupling constant related to the particle charge. (For
more details see Appendix B.)

For simplicity we omitted the interaction of the spin with magnetic field -
n∑

j=1

g

2mj
σj · curlA(xj).

If we fix the particle potential V (x), then the Hamiltonian Hg depends on two free parameters:

• The coupling constant g (related to the electron charges);

• The ultraviolet cut-off κ (related to the electron renormalized mass).

2.2 Stability and Radiation*

For a large class of potentials V (x), including Coulomb potentials,the operator H is self-adjoint and
bounded below.

• The stability of the system under consideration is equivalent to the statement of existence of
the ground state of H, i.e. an eigenfunction with the smallest possible energy.

• The physical phenomenon of radiation is expressed mathematically as emergence of resonances
out of excited states of a particle system due to coupling of this system to the quantum electro-
magnetic field.

Our goal is to develop the spectral theory of the Hamiltonian H and relate to the properties of
the relevant evolution. Namely, for a quantum-mechanical system of particles coupled to quantized
electromagnetic field we would like to show that

1) The ground state of the particle system is stable when the coupling is turned on, while
2) The excited states, generically, are not. They turn into resonances.

2.3 Particle system

The matter system considered consists of n charged particles interacting between themselves and
with external fields. Its Hamiltonian operator is given by

Hp := −
n∑

j=1

1
2mj

∆xj + V (x), (1)
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where ∆xj
is the Laplacian in the variable xj and, recall, V (x) is the total potential of the particle

system. Hp acts on a Hilbert space of the particle system, Hp, which is either L2(R3n) or a subspace
of this space determined by a symmetry group of the particle system.

PICTURE

2.4 Quantized Electromagnetic Field

The quantized electromagnetic field is described by the quantized vector potential, which, in the
Coulomb gauge (divA(y) = 0), is given by

A(y) =
∫

(eikya(k) + e−ikya∗(k))χ(k)
d3k√
|k| , (2)

where χ is an ultraviolet cut-off : χ(k) = 1 in a neighborhood of k = 0 and is decaying sufficiently
fast at infinity.

The dynamics of the quantized electromagnetic field is given through the quantum Hamiltonian

Hf =
∫

d3k ω(k)a∗(k) · a(k), (3)

where ω(k) = |k| is the dispersion law connecting the energy of the field quantum with its wave
vector k.

Here a(k) and a∗(k) are annihilation and creation operators acting on the Fock space Hf ≡ F
(see Appendix A for the definitions).

2.5 Ultra-violet Cut-off

Assuming the ultra-violet cut-off χ(k) decays on the scale κ, in order to correctly describe the
phenomena of interest, such as emission and absorption of electromagnetic radiation, i.e. for optical
and rf modes, we have to assume that the cut-off energy,

~cκ À α2mc2, ionization energy, characteristic energy of the particle motion,

or α2 ¿ κ in our units. On the other hand, we assume

~cκ ¿ mc2, the rest energy of the the electron,

where the relativistic effects, such as electron-positron pair creation, vacuum polarization and rela-
tivistic recoil, take place. Combining the last two conditions we arrive at

α2 ¿ κ ¿ 1 (α2mc/~¿ κ ¿ mc/~).

After the rescaling x → α−1x and k → α2k the new cut-off momentum scale, κ′ = α−2κ, satisfies

1 ¿ κ′ ¿ α−2,

which is easily accommodated by our estimates (e.g. we can have κ = O(α−1/3)).

2.6 Units*

We use the units in which the Planck constant divided by 2π, the speed of light and the electron
mass are equal to 1 ( ~ = 1, c = 1 and m = 1). In these units the electron charge is equal to −√α,
where α = e2

4π~c ≈ 1
137 (the fine-structure constant) and the distance, time and energy are measured

in units of ~/mc = 3.86 · 10−11cm, ~/mc2 = 1.29 · 10−21sec and mc2 = 0.511MeV , respectively
(natural units).
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3 Resonances

As was mentioned above, the mathematical language which describes the physical phenomenon of
radiation is that of quantum resonances. We expect that the latter emerge out of excited states of
a particle system due to coupling of this system to the quantum electro-magnetic field.

Quantum resonances manifest themselves in three different ways:
1) Eigenvalues of complexly deformed Hamiltonian;
2) Poles of the meromorphic continuation of the resolvent across the continuous spectrum;
3) Metastable states.

3.1 Complex Deformation

To define the resonances for the Hamiltonian H we pass to the one-parameter (deformation) family

Hθ := UθHU−1
θ , (4)

where θ is a real parameter and Uθ, on the total Hilbert space H := Hp ⊗ F , is the one-parameter
group of unitary operators, whose action is rescaling particle positions and of photon momenta:

xj → eθxj and k → e−θk.

One can show show that:
1) Under a certain analyticity condition on coupling functions, the family Hθ has an analytic

continuation in θ to the disc D(0, θ0), as a type A family in the sense of Kato;
2) The real eigenvalues of Hθ, Im θ > 0, coincide with eigenvalues of H and that complex

eigenvalues of Hθ, Im θ > 0, lie in the complex half-plane C−;
3) The complex eigenvalues of Hθ, Im θ > 0, are locally independent of θ.

PICTURE

We call complex eigenvalues of Hθ, Im θ > 0 the resonances of H.
Exercise.* Find the complex deformation of the hydrogen atom and photon Hamiltonians H :=

−∆− α
|x| and Hf . Find the spectra of the deformations Hθ and Hfθ. (Answer:

Hθ = e−2θ(−∆)− e−θ α

|x| , Hfθ = e−θHf ,

σ(Hθ) = {ehydr
j } ∪ e−2Imθ[0,∞),

σ(Hfθ) = {0} ∪ e−Imθ[0,∞),

where ehydr
j are the eigenvalues of the hydrogen atom.)

3.2 Resonances as Poles

Let Ψθ = UθΨ, etc., for θ ∈ R and z ∈ C+. Use the unitarity of Uθ for real θ, to obtain (the Combes
argument)

〈Ψ, (H − z)−1Φ〉 = 〈Ψθ̄, (Hθ − z)−1Φθ〉. (5)

Assume now that Ψθ and Φθ have analytic continuations into a complex neighbourhood of θ = 0 and
continue the r.h.s analytically first in θ into the upper half-plane and then in z across the continuous
spectrum.

• The real eigenvalues of Hθ give real poles of the r.h.s. of (5) and therefore they are the
eigenvalues of H.
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• The complex eigenvalues of Hθ are poles of the meromorphic continuation of the l.h.s. of (5)
across the spectrum of H onto the second Riemann sheet.

The poles manifest themselves physically as bumps in the scattering cross-section or poles in the
scattering matrix.

Exercise.* Use complex deformation in order to continue the integral
∫∞
0

f(ω)
ω−z dω across the

semi-axis (0,∞) from the upper semi-plane C+ to the second Riemann sheet. Formulate conditions
on f(ω) so that such a continuation is possible. (Answer to the first part:

∫∞
0

f(e−θω)
ω−eθz

dω, Imθ >
0, Imz < 0.

Remark. The r.h.s. of (5) has an analytic continuation into a complex neighbourhood of θ = 0,
if Ψ, Φ ∈ D, where

D :=
⋃

n>0,a>0

Ran
(
χN≤nχ|T |≤a

)
. (6)

Here N =
∫

d3ka∗(k)a(k) be the photon number operator and T be the self-adjoint generator of the
one-parameter group Uθ, θ ∈ R. It is easy to show that the set D is dense.

3.3 Resonance States as Metastable States

Let z∗, Im z∗ ≤ 0, be the ground state or resonance eigenvalue. One expects that for an initial
condition, ψ0, localized in a small energy interval around the ground state or resonance energy,
Re z∗, the solution, ψ = e−iHtψ0, of the time-dependent Schrödinger equation, i∂tψ = Hψ, is of the
form

ψ = e−iz∗tφ∗ + Oloc(t−α) + Ores(gβ), (7)

for some α, β > 0 (depending on ψ0), where

• φ∗ is either the ground state or an excited state of the unperturbed system, depending on
whether z∗ is the ground state energy or a resonance eigenvalue;

• The error term Oloc(t−α) satisfies ‖(1 + |T |)−νOloc(t−α)‖ ≤ Ct−α, where T is the generator
of the group Uθ, with an appropriate ν > 0;

• The error term Ores(gβ) is absent in the ground state case.

(7) implies that, for the resonance, −Im z∗ gives the decay probability per unit time, and
(−Im z∗)−1, as the life-time, of the resonance.

3.4 Relation between Poles and Asymptotics*

• To determine the asymptotic behaviour of solutions e−iHtψ0 we use the formula connecting
the propagator and the resolvent:

e−iHtf(H) =
1
π

∫ ∞

−∞
dλf(λ)e−iλtIm (H − λ− i0)−1.

• For the ground state the absolute continuity of the spectrum outside the ground state energy,
or a stronger property of the limiting absorption principle, suffices to establish the result above.

• For the resonances, one performs a suitable deformation of the contour of integration to the
second Riemann sheet to pick up the contribution of poles there. This works when the reso-
nances are isolated. In the present case, they are not. This is a consequence of the infrared
problem.

Hence, determining the long-time behaviour of e−iHtψ0 is a subtle problem.

PICTURE
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3.5 Comparison with Quantum Mechanics*

This situation is quite different from the one in Quantum Mechanics (e.g. Stark effect or tunneling
decay) where the resonances are isolated eigenvalues of complexly deformed Hamiltonians. This
makes the proof of their existence and establishing their properties, e.g. independence of θ (and,
in fact, of the transformation group Uθ), relatively easy. In the non-relativistic QED (and other
massless theories), giving meaning of the resonance poles and proving independence of their location
of θ is a rather involved matter.

3.6 Infrared Problem

The resonances arise from the eigenvalues of the non-interacting Hamiltonian Hg=0. The low energy
spectrum of the operator H0 consists of branches [ε(p)

i ,∞) of absolutely continuous spectrum and of
the eigenvalues ε

(p)
i ’s, sitting at the continuous spectrum ’thresholds’ ε

(p)
i ’s.

The eigenvalues ε
(p)
i ’s correspond to the eigenfunctions φ

(p)
i ⊗Ω, where φ

(p)
i are the eigenfunctions

of the particle system, while Ω is the photon vacuum. The branches [ε(p)
i ,∞) of absolutely continuous

spectrum are associated with generalized eigenfunctions of the form φ
(p)
i ⊗ gλ, where gλ are the

generalized eigenfunctions of Hf : Hfgλ = λgλ, 0 < λ < ∞.
The absence of gaps between the eigenvalues and thresholds is a consequence of the fact that the

photons are massless.
To address this problem we use the spectral RG. The problem here is that the leading part of

the perturbation in H is marginal.

PICTURE

4 Existence of the ground and resonance states

4.1 Bifurcation of Eigenvalues and Resonances

Let ε
(p)
0 < ε

(p)
1 < ... be the isolated eigenvalues of the particle Hamiltonian Hp. Stated informally

what we show is

• The ground state of H|g=0 ⇒ the ground state H (ε0 = ε
(p)
0 + O(g2) and ε0 < ε

(p)
0 );

• The excited states of H|g=0 ⇒ (generically) the resonances of H (εj,k = ε
(p)
j + O(g2));

• There is Σ > inf σ(H) (the ionization threshold) s.t. for energies < Σ that particles are
exponentially localized around the common center of mass.

For energies > Σ the system either sheds off the excess of energy and descends into a localized state
or some breaks apart with some of the particles flying off to infinity.

To formulate this result more precisely, denote

ε(p)
gap(ν) := min{|ε(p)

i − ε
(p)
j | | i 6= j, ε

(p)
i , ε

(p)
j ≤ ν}.

Theorem (Fate of particle bound states) Fix e
(p)
0 < ν < inf σess(Hp) and let g ¿ ε

(p)
gap(ν). Then

for g 6= 0,

• H has a ground state, originating from a ground state of H|g=0 (ε0 = ε
(p)
0 + O(g2), ε0 < ε

(p)
0 );

• Generically, H has no other bound state (besides the ground state);
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• Eigenvalues, ε
(p)
j < ν, j 6= 0, of H|g=0 =⇒ resonance eigenvalues, εj,k, of H;

• εj,k = ε
(p)
j + O(g2) and the total multiplicity of εj,k equals the multiplicity of ε

(p)
j ;

• There is Σ > inf σ(H) (the ionization threshold) s.t. for any energy interval in ∆ ⊂ (inf σ(H),Σ),

‖eδ|x|ψ‖ < ∞, ∀ψ ∈ RanE∆(H), δ < Σ− sup∆.

P ICTURE

Remark. The relation ε0 < ε
(p)
0 is due to the fact that the electron surrounded by clouds of

photons become heavier.

4.2 Meromorphic Continuation Across Spectrum

Theorem. (Meromorphic continuation of the matrix elements of the resolvent) Let ε0 := inf σ(Hg)
be the ground state energy of Hg. Assume g ¿ ε

(p)
gap(ν). Then

• For a dense set (defined in (10) below) of vectors Ψ and Φ, the matrix elements

F (z, Ψ,Φ) := 〈Ψ, (H − z)−1Φ〉
have meromorphic continuations from C+ across the interval (ε0, ν) ⊂ σess(H) into

{z ∈ C−| ε0 < Re z < ν}/
⋃

0≤j≤j(ν)

Sj,k,

where Sj,k are the wedges starting at the resonances

Sj,k := {z ∈ C | 1
2
Re (eθ(z − εj,k)) ≥ |Im (eθ(z − εj,k))|}; (8)

• This continuation has poles at εj,k: limz→εj,k
(εj,k − z)F (z, Ψ, Φ) is finite and 6= 0.

PICTURE

4.3 Resonance Poles*

Can we make sense of the resonance poles in the present context? Let

Q := {z ∈ C−| ε0 < Re z < ν}/
⋃

j≤j(ν),k

Sj,k.

Theorem. For each Ψ and Φ from a dense set of vectors, the meromorphic continuation, F (z, Ψ,Φ),
of the matrix element 〈Ψ, (H − z)−1Φ〉 is of the following form near the resonance εj of H:

F (z, Ψ, Φ) = (εj,k − z)−1p(Ψ, Φ) + r(z, Ψ,Φ). (9)

Here p and r(z) are sesquilinear forms in Ψ and Φ, s.t.

• r(z) is analytic in Q and bounded on the intersection of a neighbourhood of εj,k with Q as

|r(z, Ψ,Φ)| ≤ CΨ,Φ|εj,k − z|−γ for some γ < 1;

• p 6= 0 at least for one pair of vectors Ψ and Φ and p = 0 for a dense set of vectors Ψ and Φ in
a finite co-dimension subspace.
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4.4 Local Decay?

4.5 Analyticity?

4.6 Discussion*

• Generically, excited states turn into the resonances, not bound states. is generically satisfied.

• The second theorem implies the absolute continuity of the spectrum and its proof gives also
the limiting absorption.

• The meromorphic continuation in question is constructed in terms of matrix elements of the
resolvent of a complex deformation, Hθ, Im θ > 0, of the Hamiltonian H.

• The proof of first theorem gives fast convergent expressions in the coupling constant g for the
ground state energy and resonances.

• The dense set mentioned in the second theorem is

D :=
⋃

n>0,a>0

Ran
(
χN≤nχ|T |≤a

)
, (10)

where N =
∫

d3ka∗(k)a(k) be the photon number operator and T be the self-adjoint generator
of the one-parameter group Uθ, θ ∈ R. (It is dense, since N and T commute.)

5 Analysis of QED Hamiltonian

We want to understand the spectral structure of the quantum Hamiltonian

H =
n∑

j=1

1
2mj

(i∇xj − gA(xj))2 + V (x) + Hf .

The main steps in our analysis are:

• Perform a new canonical transformation (a generalized Pauli-Fierz transform)

H → e−igF HeigF ;

• Apply the spectral RG on new – momentum anisotropic – Banach spaces.

5.1 Generalized Pauli-Fierz transformation

for simplicity, consider one particle of mass 1. We define the generalized Pauli-Fierz transformation
as:

HPF := e−igF HeigF , (11)

where F (x) is the self-adjoint operator given by

F (x) =
∑

λ

∫
(f̄x,λ(k)aλ(k) + fx,λ(k)a∗λ(k))

χ(k)d3k√
|k| , (12)

with the coupling function fx,λ(k) chosen as

fx,λ(k) := e−ikx ϕ(|k| 12 eλ(k) · x)√
|k| , (13)

with ϕ ∈ C2 and ϕ′(0) = 1.
The standard Pauli-Fierz transformation: ϕ(s) = s.
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5.2 Generalized Pauli-Fierz Hamiltonian

The Hamiltonian HPF is of the same form as H. Indeed, compute:

HPF =
1
2
(p + gA1(x))2 + Vg(x) + Hf + gG(x), (14)

where

A1(x) =
∑

λ

∫
(χ̄x,λ(k)aλ(k) + χx,λ(k)a∗λ(k))

d3k√
|k| ,

with the new coupling function χλ,x(k) := (eλ(k)e−ikx −∇xfx,λ(k))χ(k) and

Vg(x) := V (x) + 2g2
∑

λ

∫
|k||fx,λ(k)|2d3k,

G(x) := −i
∑

λ

∫
|k|(f̄x,λ(k)aλ(k)− fx,λ(k)a∗λ(k))

d3k√
|k| .

The potential Vg(x) is a small perturbation of V (x) and the operator G(x) is easy to control. The
new coupling function has better infrared behaviour for bounded |x|:

|χλ,x(k)| ≤ constmin(1,
√
|k|〈x〉). (15)

Remark.* The formula (14) can be obtained by using the commutator expansion

e−igF (x)HfeigF (x) = −ig[F, Hf ]− g2[F, [F, Hf ]].

6 Renormalization Group

To find the spectral structure of Hθ we use the spectral renormalization group (RG):

• Pass from a single operator Hθ to a Banach space B of Hamiltonian-type operators;

• Construct a map, Rρ, (RG transformation) on B, with the following properties:

(a) Rρ is ’isospectral’;

(b) Rρ removes the photon degrees of freedom related to energies ≥ ρ.

• Relate the dynamics of semi-flow, Rn
ρ , n ≥ 1, (called renormalization group) to spectral prop-

erties of individual operators in B.

6.1 RG Map

The renormalization map is defined on Hamiltonians acting on Hf which as follows

Rρ = ρ−1Sρ ◦ Fρ, (16)

where ρ > 0, Sρ : B[H] → B[H] is the scaling transformation:

Sρ(1) := 1, Sρ(a#(k)) := ρ−d/2 a#(ρ−1k), (17)

and Fρ is the (smooth) Feshbach-Schur map, or decimation, map,

Fρ(H) := χρ(H −Hχρ(χρHχρ)
−1χρH)χρ, (18)
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where χρ and χρ is a pair of orthogonal projections, defined as

χρ = χHp=ej ⊗ χHf≤ρ and χρ := 1− χρ.

Remark. The construction of the map Fρ can be generalized to ’smooth’ projections which
form a partition of unity χ2

ρ + χ2
ρ = 1.

6.2 Isospectrality of Fρ

The map Fρ is isospectral in the sense of the following theorem:

Theorem 6.1. (i) λ ∈ ρ(H) ⇔ 0 ∈ ρ(Fρ(H − λ));

(ii) Hψ = λψ ⇐⇒ Fρ(H − λ)ϕ = 0;

(iii) dim Ker(H − λ) = dim KerFρ(H − λ);

(iv) (H − λ)−1 exists ⇔ Fρ(H − λ)−1 exists.

For the proof of this theorem as well as for the relation between ψ and ϕ in (ii) and between
(H − λ)−1 and Fρ(H − λ)−1 in (iv) see Appendix C.

7 A Banach Space of Hamiltonians

Operators on the subspace Ran χ1 of the Fock space F are said to be in the generalized normal form
if they can be written as:

H =
∑

m+n≥0

∫

Bm+n
1

m+n∏

i=1

d3ki

m∏

i=1

a∗(ki)wm,n

(
Hf ; k(m+n)

) m+n∏

i=m+1

a(ki), (19)

where Br
1 denotes the cartesian product of r unit balls in R3 and k(m) := (k1, . . . , km).

We assume that the functions wm,n(r, , k(m+n)) ∈ C2 are symmetric w. r. t. the variables
(k1, . . . , km) and (km+1, . . . , km+n) and obey

‖wm,n‖µ := max
j

sup
r∈I,k(m+n)∈Bm+n

1

∣∣|kj |−µ
m+n∏

i=1

|ki|1/2wm,n(r; k(m+n))
∣∣, (20)

where µ ≥ −1/2 and I := [0, 1]. (We write H =
∑

m+n≥0 Hm,n.) For µ ≥ 0 and 0 < ξ < 1 we define
the Banach space

Bµξ := {H :
∥∥H

∥∥
µ,ξ

:=
∑

m+n≥0

ξ−(m+n) ‖wm,n‖µ < ∞}. (21)

7.1 Basic Bound

The following bound shows that our Banach space norm control the operator norm:

Theorem 7.1. Let χρ ≡ χHf≤ρ. Then for all ρ > 0 and m + n ≥ 1

∥∥χρ Hm,n χρ

∥∥ ≤ ρm+n+µ

√
m! n!

‖wm,n‖µ. (22)

This shows that the terms with higher numbers of creation and annihilation operators are easier
to control.
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7.2 Sketch of Proof of Basic Bound*

For simplicity we prove this inequality for m = n = 1. We have

〈χρφ,H1,1 χρφ〉 =
∫

B2
1

2∏

i=1

d3ki 〈Φk1 , w1,1

(
Hf ; k1, k2

)
Φk2〉.

where Φk = a(k)χρφ. Now we write χρ = χρχ2ρ and pull χ2ρ toward w1,1(Hf ; k1, k2) using

a(k)F (Hf ) = F (Hf + |k|) a(k), F (Hf ) a∗(k) = a∗(k)F (Hf + |k|)
(the pull-trough formulae). This gives

|〈φ, χρ H1,1 χρφ〉|

= |
∫

|ki|≤2ρ,i=1,2

2∏

i=1

d3ki 〈Φk1 , χ2ρ−|k1|w1,1

(
Hf ; k1, k2

)
χ2ρ−|k2|Φk2〉|

≤
∫

|ki|≤2ρ,i=1,2

2∏

i=1

d3ki ‖Φk1‖ ‖w1,1

(
Hf ; k1, k2

)‖ ‖Φk2‖

≤
( ∫

|ki|≤2ρ,i=1,2

2∏

i=1

d3ki

‖w1,1

(
Hf ; k1, k2

)‖2
|k1||k2|

)1/2 ∫
d3k‖

√
|k|Φk‖2.

Now, using ‖w1,1

(
Hf ; k1, k2

)‖ ≤ ‖w1,1‖µ
|k1|µ+|k2|µ
|k1|

1
2 |k2|

1
2

and
∫

d3k‖
√
|k|Φk‖2 = ‖√Hfχρφ‖2, we find

|〈φ, χρ H1,1 χρφ〉| ≤ ρ2+µ‖w1,1‖µ.

7.3 Unstable, Neutral and Stable Components

Decompose H ∈ Bµξ as
H = E1 + T + W, (23)

where
E := 〈Ω,HΩ〉, T := H0,0 − 〈Ω,HΩ〉 ∼ Hf , W :=

∑

m+n≥1

Hm,n.

These terms of the Hamiltonians scale as follows

• ρ−1Sρ

(
Hf

)
= Hf (Hf is a fixed point of ρ−1Sρ);

• ρ−1Sρ(E · 1) = ρ−1E · 1 ( E · 1 expand under ρ−1Sρ at a rate ρ−1);

• ‖Sρ(Wm,n)‖µ ≤ ρα ‖wm,n‖µ, α := m + n − 1 + µδm+n=1 ( Wmn contract under ρ−1Sρ, if
µ > 0).

Thus for µ > 0, E, T, W behave as relevant, marginal, and irrelevant operators, respectively.
For µ = 0, the operators Wmn, m + n = 1, become marginal.

8 Action of Renormalization Map

To control these components we introduce, for α, β, γ > 0, the following polydisc:

Dµ(α, β, γ) :=
{

H = E + T + W ∈ Wµ | |E| ≤ α,

sup
r∈[0,∞)

|T ′(r)− 1| ≤ β, ‖W‖µ,ξ ≤ γ
}

.



QED August, 2010 12

Theorem 8.1. Let 0 < ρ < 1/2, α, β, γ ≤ ρ/8 and µ0 = 1/2. Then there is c > 0, s.t.

• Rρ(Hθ) ∈ Dµ0(α0, β0, γ0), α0 = O(g2ρµ0−2), β0 = O(g2ρµ0−1), γ0 = O(gρµ
0 ),

provided g ¿ 1;

• Dµ(α, β, γ) ⊂ D(Rρ), provided µ > 0;

• Rρ : Dµ(α, β, γ) → Dµ(α′, β′, γ′),

continuously, with

α′ = ρ−1α + c
(
γ2/2ρ

)
, β′ = β + c

(
γ2/2ρ

)
, γ′ = cρµγ.

8.1 Idea of Proof of Dµ(ρ/8, 1/8, ρ/8) ⊂ D(Rρ)*

Since W := H −E − T defines a bounded operator on F , we only need to check the invertibility of
Hτχρ

on Ran χρ. The operator E + T is invertible on Ran χρ: for all r ∈ [3ρ/4,∞)

Re T (r) + Re E ≥ r − |T (r)− r| − |E|
≥ r

(
1 − sup

r
|T ′(r)− 1|) − |E|

≥ 3 ρ

4
(1− 1/8) − ρ

8
≥ ρ

2
⇒ E + T is invertible and ‖(E + T )−1‖ ≤ 2/ρ.

Now, by the basic estimate,
∥∥W‖ ≤ ρ/8 and therefore,
∥∥χρWχρ(E + T )−1‖ ≤ 1/4

⇒ E + T + χρWχρ is invertible on Ran χρ

⇒ Dµ(ρ/8, 1/8, ρ/8) ⊂ D(Fρ) = D(Rρ).

8.2 Sketch of Proof of Rρ : Dµ,s(α, β, γ) → Dµ,s(α′, β′, γ′)*

Normal form of Rρ(H). Recall that χρ ≡ χHf≤ρ and χρ := 1 − χρ. Let H0 := E + T , so that
H = H0 + W . We have shown above

∥∥H−1
0 χρ

∥∥ ≤ 2
ρ

and ‖W‖ ≤ ρ

8
.

In the Feshbach-Schur map, Fρ,

Fρ

(
H

)
= χρ

(
H0 + W −W χρ

(
χρ(H0 + W )χρ

)−1
χρ W

)
χρ,

we expand the resolvent (χρ(H0 + W )χρ

)−1 in the norm convergent Neumann series

Fρ

(
H

)
= χρ

(
H0 +

∞∑
s=0

(−1)s W
(
H−1

0 χ2
ρ W

)s)
χρ.

Next, we transform the right side to the generalized normal form using generalized Wick’s theorem.
Generalized Wick’s Theorem. To write the product W

(
H−1

0 χ2
ρ W

)s in the generalized
normal form we pull the annihilation operators, a, to the right and the creation operators, a∗, to
the left, apart from those which enter Hf . We use the rules:

a(k)a∗(k′) = a∗(k′)a(k) + δ(k − k′),
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a(k)F (Hf ) = F (Hf + |k|) a(k), F (Hf ) a∗(k) = a∗(k)F (Hf + |k|).
Some of the creation and annihilation operators reach the extreme left and right positions, while
the remaining ones contract. The terms with m creation operators on the left and n annihilation
operators on the right contribute to the (m, n)− formfactor, w

(s)
m,n, of the operator W

(
H−1

0 χ2
ρ W

)s.
As the result we obtain the generalized normal form of Fρ(H):

Fρ(H) =
∑

m+n≥0

W
′
m,n.

The term W
′
0,0 = 〈W (s)

0,0 〉Ω + (W (s)
0,0 − 〈W (s)

0,0 〉Ω) contributes the corrections to E + T .
This is the standard way for proving the Wick theorem, taking into account the presence of Hf−

dependent factors. (See [11] for a different, more formal proof.)
Estimating Formfactors. The problem here is that the number of terms generated by various

contractions is O(s!). Therefore a simple majoration of the series for the (m, n)− formfactor, w
(s)
m,n,

of the operator W
(
H−1

0 χ2
ρ W

)s will diverge badly.
To overcome this we re-sum the series by, roughly, representing the sum over all contractions,

for a given m and n, as
w(s)

m,n ∼ 〈Ω, [W
(
H−1

0 χ2
ρ W

)s]m,nΩ〉,
where [W

(
H−1

0 χ2
ρ W

)s]m,n is W
(
H−1

0 χ2
ρ W

)s, with m escaping creation operators and n escaping

annihilation operators deleted. Now the estimate of w
(s)
m,n is straightforward:

‖w(s)
m,n‖ . ‖χρ′ W ′χρ′‖s+1

(symbolically), for the operator norm, and similarly for Bµ,ξ−norm.

PICTURE

9 Renormalization Group

9.1 Iteration of Rρ

To iterate Rρ we have to control the expanding direction: Rρ(ζ1) = ρ−1ζ1. To control this direc-
tion, we adjust, inductively, at each step the constant component 〈H〉Ω := 〈Ω,HΩ〉 of the initial
Hamiltonian, H:

|〈H〉Ω − en−1| ≤ 1
12

ρn+1,

en−1 is the unique zero of the function
〈Rn−1

ρ (H − 〈H〉Ω + λ)
〉
Ω
,

so that
H ∈ the domain of Rn

ρ .

9.2 RG Dynamics

The results outlined above can be reformulated as Rn
ρ has

• the fixed-point manifold Mfp := CHf ,

• an unstable manifold Mu := C1,
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• a (complex) co-dimension 1 stable manifold Ms for Mfp foliated by (complex) co-dimension
2 stable manifolds for each fixed point.

PICTURE

Stable and unstable manifolds.

9.3 RG and Spectral Properties

Adjust the parameter 〈Ω,HΩ〉 iteratively, so that H ∈ D(Rn
ρ ) =⇒ H(n) := Rn

ρ (H):

H =⇒ RG BOX =⇒ H(n).

Use that for n sufficiently large, H(n)(λ) ≈ ζHf , for some ζ ∈ C, Re ζ > 0, to find spectral
information about H(n)

=⇒ Spectral information about H(n−1) (by ’isospectrality’ of Rρ)
...
=⇒ Spectral information about H:

Spec info (H) ⇐= RG BOX ⇐= Spec info (H(n))

=⇒ Spectral information about Hθ.

10 Open Problems

Connection between the ground state and resonance eigenvalues to poles of the scattering matrix;

Minimal and maximal velocity of photons;

Asymptotic completeness;

Bohr photon frequency laws.

11 Comments on Literature*

These lectures follow the papers [74, 31, 1], which in turn are based on [11, 12, 5]. The papers
[74, 31, 1], use the smooth Feshbah-Schur map ([5, 36]), which is much more powerful (see Appendix
D), while in these lecture we use, for simplicity, the the original, Feshbach-Schur map (see [11, 12]),
which is simpler to formulate.

Theorems 1 and 2 were proven in [11, 12, 13] for ’confined particles’ (the exact conditions are
somewhat technical) and in the present form in [74].

The binding results are given in [13, 35].
The results of [13] on existence (and uniqueness) of the ground state were considerably improved

in [62, 48, 49, 50, 55, 4] (by compactness techniques) and [7] (by multiscale techniques), with the
sharpest result given in [38]1 .

1The papers [13, 48, 38, ?, 55] include the interaction of the spin with magnetic field in the Hamiltonian.
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Related results:
The asymptotic stability of the ground state (local decay): [15, 30, 32].
The survival probabilities of excited states: [13, 43, 1].
Atoms with dynamic nuclei: [24, 2, 65].
Analyticity of the ground state eigenvalues in parameters and asymptotic expansions: [13, 7, 9],
[37, 44, 45, 46].
Enhanced binding: [56, 64, 39, 40, 41].
Electron mass renormalization: [40, 57, 63, 64, 6, 18].
One particle states: [26, 19, 20, 33].
Scattering amplitudes: [8].
Scattering theory: [27, 28, 29].
Positive temperatures: [14, 66, 67].

A *Creation and Annihilation Operators

The Bosonic Fock space, F , over L2(R3,C, d3k) (or L2(R3,C2, d3k)) is defined by

F :=
∞⊕

n=0

Sn L2(R3,C2, d3k)⊗n, (24)

and a∗(k) and a(k) denote the creation and annihilation operators on F . The families a∗(k) and
a(k) are operator-valued generalized, transverse vector fields: (below a#

λ = aλ or a∗λ.)

a#(k) :=
∑

λ∈{−1,1}
eλ(k)a#

λ (k),

where eλ(k) are polarization vectors, i.e. orthonormal vectors in R3 satisfying k · eλ(k) = 0, and
a#

λ (k) are scalar creation and annihilation operators, satisfying the canonical commutation relations:

[
a#

λ (k) , a#
λ′(k

′)
]

= 0,
[
aλ(k) , a∗λ′(k

′)
]

= δλλ′δ
3(k − k′). (25)

where Sn is the orthogonal projection onto the subspace of totally symmetric n-particle wave func-
tions contained in the n-fold tensor product L2(R3,C, d3k)⊗n of L2(R3,C, d3k); and S0L

2(R3,C, d3k)⊗0 :=
C. The vector Ω := 1

⊕∞
n=1 0 is called the vacuum vector in F . Vectors Ψ ∈ F can be identified

with sequences (ψn)∞n=0 of n-particle wave functions, ψn(k1, . . . , kn), which are totally symmetric in
their n arguments, and ψ0 ∈ C.

The scalar product of two vectors Ψ and Φ is given by

〈Ψ , Φ〉 :=
∞∑

n=0

∫ n∏

j=1

d3kj ψn(k1, . . . , kn) ϕn(k1, . . . , kn). (26)

Given a one particle dispersion relation ω(k), the energy of a configuration of n non-interacting
field particles with wave vectors k1, . . . , kn is given by

∑n
j=1 ω(kj). We define the free-field Hamil-

tonian, Hf , giving the field dynamics, by

(HfΨ)n(k1, . . . , kn) =
( n∑

j=1

ω(kj)
)

ψn(k1, . . . , kn), (27)

for n ≥ 1 and (HfΨ)n = 0 for n = 0. Here Ψ = (ψn)∞n=0 (to be sure that the r.h.s. makes sense
we can assume that ψn = 0, except for finitely many n, for which ψn(k1, . . . , kn) decrease rapidly at
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infinity). Clearly that the operator Hf has the single eigenvalue 0 with the eigenvector Ω and the
rest of the spectrum absolutely continuous.

With each function ϕ ∈ L2(R3,C, d3k) one associates an annihilation operator a(ϕ) defined as
follows. For Ψ = (ψn)∞n=0 ∈ F with the property that ψn = 0, for all but finitely many n, the vector
a(ϕ)Ψ is defined by

(a(ϕ)Ψ)n(k1, . . . , kn) :=
√

n + 1
∫

d3k ϕ(k) ψn+1(k, k1, . . . , kn). (28)

These equations define a closable operator a(ϕ) whose closure is also denoted by a(ϕ). Eqn (28)
implies the relation

a(ϕ)Ω = 0, (29)

The creation operator a∗(ϕ) is defined to be the adjoint of a(ϕ) with respect to the scalar product
defined in Eq. (26). Since a(ϕ) is anti-linear, and a∗(ϕ) is linear in ϕ, we write formally

a(ϕ) =
∫

d3k ϕ(k) a(k), a∗(ϕ) =
∫

d3k ϕ(k) a∗(k), (30)

where a(k) and a∗(k) are unbounded, operator-valued distributions. The latter are well-known to
obey the canonical commutation relations (CCR):

[
a#(k) , a#(k′)

]
= 0,

[
a(k) , a∗(k′)

]
= δ3(k − k′), (31)

where a# = a or a∗.
Now, using this one can rewrite the quantum Hamiltonian Hf in terms of the creation and

annihilation operators, a and a∗, as

Hf =
∫

d3k a∗(k) ω(k) a(k), (32)

acting on the Fock space F .
More generally, for any operator, t, on the one-particle space L2(R3,C, d3k) we define the operator

T on the Fock space F by the following formal expression T :=
∫

a∗(k)ta(k)dk, where the operator
t acts on the k−variable (T is the second quantization of t). The precise meaning of the latter
expression can obtained by using a basis {φj} in the space L2(R3,C, d3k) to rewrite it as T :=∑

j

∫
a∗(φj)a(t∗φj)dk.

B *Rescaling and Conditions on Potentials

First, we consider the Hamiltonian Hg for an atom or molecule interacting with radiation field,

H(α) =
n∑

j=1

1
2mj

(i∇xj −
√

αAχ′(xj))2 + αV (x) + Hf ,

where αV (x) is the total Coulomb potential of the particle system, and Aχ′(y) is the original vector
potential with the ultraviolet cut-off χ′. Rescaling x → α−1x and k → α2k we arrive at the
Hamiltonian

Hg =
n∑

j=1

1
2mj

(i∇xj − gA(xj))2 + V (x) + Hf ,

where g := α3/2 and A(y) = Aχ(αy), with χ(k) := χ′(α2k).2 After that we relax the restriction on
V (x) by allowing it to be a standard generalized n-body potential (see below). Note that though

2In the case of a molecule in the Born-Oppenheimer approximation, the resulting V (x) also depends on the rescaled
coordinates of the nuclei.
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this is not displayed, A(x) does depend on g. This however does not effect the analysis of the
Hamiltonian Hg. (If anything, this makes certain parts of it simpler, as derivatives A(x) bring down
g.)

Generalized n-body potentials :

(V) V (x) =
∑

i Wi(πix), where πi are a linear maps from R3n to Rmi , mi ≤ 3n and Wi are Kato-
Rellich potentials (i.e. Wi(πix) ∈ Lpi(Rmi) + (L∞(R3n))ε with pi = 2 for mi ≤ 3, pi > 2 for
mi = 4 and pi ≥ mi/2 for mi > 4).

Under the assumption (V), the operator HSM
g is self-adjoint. In order to tackle the resonances

we choose the ultraviolet cut-off, χ(k), so that

The function θ → χ(e−θk) has an analytic continuation from the real axis, R, to the strip
{θ ∈ C||Im θ| < π/4} as a L2

⋂
L∞(R3) function,

e.g. χ(k) = e−|k|
2/κ2

. Furthermore, we assume that the potential, V (x), satisfies the condition:

(DA) The the particle potential V (x) is dilation analytic in the sense that the operator-function
θ → V (eθx)(−∆ + 1)−1 has an analytic continuation from the real axis, R, to the strip
{θ ∈ C||Im θ| < θ0} for some θ0 > 0.

∗ ∗ ∗∗
In order not to deal with the problem of center-of-mass motion which is not essential in the present
context, we assume that either some of the particles (nuclei) are infinitely heavy or the system
is placed in a binding, external potential field. This means that the operator Hp has isolated
eigenvalues below its essential spectrum. However, we expect that the techniques we discuss here
can be extended to translationally invariant particle systems.

C *Proof of Theorem 6.1

In this appendix we omit the subindex ρ at χρ and χρ, and replace the subindex ρ in other operators
by the subindex χ. Moreover, we replace H−λ by H. Though χ and χ we deal with are projections,
we often keep the powers χ2 and χ2, which occur often below, having in mind showing possible
generalization to χ and χ which are ’almost (or smooth) projections’ satisfying χ2 + χ2 = 1 (see
Appendix D).

First we note that the relation between ψ and ϕ in Theorem 6.1 (ii) is ϕ = χψ, ψ = Qχ(H)ϕ,
and between H−1 and Fχ(H)−1 in (iv) is

H−1 = Qχ(H) FχH−1 Qχ(H)# + χH−1
χ χ, (33)

where Hχ := χρHχχ and Qχ(H) and Qχ(H)# are the operators, given by

Qχ(H) := χ − χH−1
χ χHχ,

Q#
χ (H) := χ − χHχH−1

χ χ.
Proof of Theorem 6.1. Throughout the proof we use the notation F := Fχ(H), Q := Qχ(H),

and Q# := Q#
χ (H). Note that (i) (0 ∈ ρ(H) ⇔ 0 ∈ ρ(Fχ(H))) follows from (iv) (H−1 exists ⇔

Fχ(H)−1 exists) and (iv) follows from (33), so we start with the latter.
Proof of (33). We observe the relations

H χ = χHχ + χ2 Hχ, and H χ = χHχ + χ2 Hχ, (34)
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which follow from χ2 + χ2 = 1. The next two identities,

H Q = χF and Q# H = F χ, (35)

are of key importance in the proof. They both derive from a simple computation, which we give
only for the first equality in (35),

H Q = Hχ − Hχ H−1
χ χHχ

= χHχ + χ2Hχ − (
χHχ + χ2Hχ

)
H−1

χ χHχ

= χF. (36)

Suppose first that the operator F has bounded invertible and define

R := Q F−1 Q# + χ H−1
χ χ. (37)

Using (35) and (34), we obtain

H R = H Q F−1 Q# +
(
χHχ + χ2Hχ

)
H−1

χ χ (38)

= χQ# + χ2 + χ2HχH−1
χ χ

= χ2 + χ2 = 1,

and, similarly, RH = 1. Thus R = H−1, and (33) holds true.
Conversely, suppose that H is bounded invertible. Then, using the definition of F and the

relation χ2 + χ2 = 1, we obtain

F χ H−1 χ = χH χ2 H−1 χ− χHχH−1
χ χHχ2 H−1χ (39)

= χH χ2 H−1 χ− χHχH−1
χ χH H−1χ + χHχ H−1

χ χHχ2 H−1χ

= χH χ2 H−1 χ + χHχ2 H−1χ

= χ2.

Similarly, one checks that χH−1 χF = 1. Thus F is invertible on Ran χ with inverse F−1 = χ H−1 χ.
Proof of (ii) (Hψ = λψ ⇐⇒ Fρ(H − λ) ϕ = 0). If ψ ∈ H \ {0} solves Hψ = 0 then (35) implies
that

Fχψ = Q# H ψ = 0. (40)

Furthermore, by (34), 0 = χH ψ = Hχ χψ + χHχ2ψ, and hence

Q χψ = χ2ψ − χH−1
χ χHχ2ψ = χ2ψ + χ2ψ = ψ. (41)

Therefore, ψ 6= 0 implies χψ 6= 0.
If ϕ ∈ Ran χ \ {0} solves Fϕ = 0 then the definition of Q implies that

χQϕ = χϕ = ϕ, (42)

which implies that Qϕ 6= 0 provided ϕ 6= 0.
Proof of (iii) (dimKer(H − λ) = dim KerFρ(H − λ)). By (i), dimKerH = 0 is equivalent to
dimKerF = 0, assuming that H ∈ D(F ). We may therefore assume that KerH 6= 0 and KerF 6= 0
are both nontrivial. Eq. (41) shows that χ : KerH → KerF is injective, hence dim KerH ≤ dimKerF ,
and Eq. (42) shows that Q : KerF → KerH is injective, hence dim KerH ≥ dimKerF . This
establishes (iv) and moreover that χ : KerH → KerF and Q : KerF → KerH are actually bijections.

2
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D Smooth Feshbach-Schur Map

We define the smooth Feshbach-Schur map and formulate its important isospectral property Let χ,
χ be a partition of unity on a separable Hilbert space H, i.e. χ and χ are positive operators on
H whose norms are bounded by one, 0 ≤ χ, χ ≤ 1, and χ2 + χ2 = 1. We assume that χ and χ
are nonzero. Let τ be a (linear) projection acting on closed operators on H with the property that
operators in its image commute with χ and χ. We also assume that τ(1) = 1. Let τ := 1 − τ and
define

Hτ,χ# := τ(H) + χ#τ(H)χ#. (43)

where χ# stands for either χ or χ.
Given χ and τ as above, we denote by Dτ,χ the space of closed operators, H, on H which belong

to the domain of τ and satisfy the following three conditions:
(i) τ and χ (and therefore also τ̄ and χ) leave the domain D(H) of H invariant:

D(τ(H)) = D(H) and χD(H) ⊂ D(H), (44)

(ii)
Hτ,χ is (bounded) invertible on Ranχ, (45)

and
(iii)

τ(H)χ and χτ(H) extend to bounded operators on H. (46)

(For more general conditions see [5, 36].)
The smooth Feshbach-Schur map (SFM) maps operators on H belonging to Dτ,χ to operators on

H by H 7→ Fτ,χ(H), where

Fτ,χ(H) := H0 + χH1χ − χWχH−1
τ,χχWχ. (47)

Here H0 := τ(H) and W := τ(H). Note that H0 and W are closed operators on H with coinciding
domains, D(H0) = D(W ) = D(H), and H = H0 +W . We remark that the domains of χWχ, χWχ,
Hτ,χ, and Hτ,χ all contain D(H).

The following result ([5]) generalizes Theorem 6.1 above; its proof is similar to the one of that
theorem:

Theorem D.1 (Isospectrality of SFM). Let 0 ≤ χ ≤ 1 and H ∈ Dτ,χ be an operator on a separable
Hilbert space H. Then we have the following results:

(i) H is bounded invertible on H if and only if Fτ,χ(H) is bounded invertible on Ranχ. In this
case

H−1 = Qτ,χ(H) Fτ,χ(H)−1 Qτ,χ(H)# + χH−1
χ χ, (48)

Fτ,χ(H)−1 = χH−1 χ + χ τ(H)−1χ. (49)

(ii) If ψ ∈ H \ {0} solves Hψ = 0 then ϕ := χψ ∈ Ranχ \ {0} solves Fτ,χ(H)ϕ = 0.

(iii) If ϕ ∈ Ran χ \ {0} solves Fτ,χ(H)ϕ = 0 then ψ := Qτ,χ(H)ϕ ∈ H \ {0} solves Hψ = 0.

(iv) The multiplicity of the spectral value {0} is conserved in the sense that dim KerH = dimKerFτ,χ(H).

(v) Assume, in addition, that H = H∗ and τ(H) = τ(H)∗ are self-adjoint, and introduce the
bounded operators

M := H−1
τ,χ χ (H − τ(H)) χ and (50)

N :=
(
1 + M∗M

)−1/2
. (51)
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Then, for any ψ ∈ H,

lim
ε↘0

Im
〈
ψ, (H − iε)−1 ψ

〉
= (52)

lim
ε↘0

Im
〈
N Qτ,χ(H)∗ ψ,

(
N Fτ,χ(H)N − iε

)−1
N Qτ,χ(H)∗ ψ

〉

and

lim
ε↘0

Im
〈
ψ,

(
N Fτ,χ(H)N − iε

)−1
ψ

〉
= (53)

lim
ε↘0

Im
〈
χN−1 ψ, (H − iε

)−1
χN−1 ψ

〉
.

E Transfer of Local Decay

We formulate an important property of the smooth Feshbach-Schur map which allows us to reduce
the proof of the local decay for the original operator, H−λ, to the proof of this property for a much
simpler one, Rn

ρ (H − λ).
One can transfer through the renormalization group also other properties of hamiltonians, e.g.

the limiting absorption principle and local decay ([32], cf. Statement (v) of Theorem D.1):

Theorem E.1. Under certain conditions on a self-adjoint operator B and a C1 family H(λ), λ ∈ ∆,
of self-adjoint operators, we have that

• Fτ,χ(H(λ)) is a self-adjoint operator;

• 〈B〉−θ[Fτ,χ(H(λ)− iε)]−1〈B〉−θ converges in norm, as ε → 0+;

• 〈B〉−θ (Fτ,χ(H(λ))− i0)−1 〈B〉−θ ∈ Cν(∆)

⇒ 〈B〉−θ
(
H(λ)− i0

)−1〈B〉−θ ∈ Cν(∆),

where 0 ≤ ν ≤ 1 and 0 < θ ≤ 1.

F Analyticity of all Parts of H

In this appendix we state a useful result, due to [37], about families Hamiltonians Hλ ≡ H(wλ) of
the form (19). The result says that if Hλ is analytic, then so are every component, Eλ, Tλ,Wλ, of
it. Here, recall, that Eλ := wλ

0,0(0), Tλ := wλ
0,0(Hf )− wλ

0,0(0),Wλ := Hλ − Eλ − Tλ (see (23)).

Proposition F.1 ([37]). Suppose that λ 7→ H(wλ) is analytic in λ ∈ S ⊂ C and that H(wλ) belongs
to some polydisc D(α, β, γ) for all λ ∈ S. Then λ 7→ Eλ, Tλ, Wλ are analytic in λ ∈ S.
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[7] V. Bach, J. Fröhlich, and A. Pizzo. Infrared-Finite Algorithms in QED: The Groundstate of an
atom interacting with the quantized radiation field. Communications in Mathematical Physics
264, Issue: 1, 145 - 165, 2006.
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[14] V. Bach, J. Fröhlich, and I. M. Sigal. Return to equilibrium. J. Math. Phys., 41(6):3985–4060,
2000.
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[32] J. Fröhlich, M. Griesemer and I.M. Sigal. Spectral renormalization group and limiting absorp-
tion principle for the standard model of non-relativisitc QED. e-print.
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