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Abstract. We study the Hodge and weight filtrations on the localization along a hyper-
surface, using methods from birational geometry and the V -filtration induced by a local
defining equation. These filtrations give rise to ideal sheaves called weighted Hodge ideals,
which include the adjoint ideal and a multiplier ideal. We analyze their local and global
properties, from which we deduce applications related to singularities of hypersurfaces of
smooth varieties.

A. Introduction

In this paper, we continue the study of weighted Hodge ideals that started in [Ola22],
where the focus was the 0-th weighted Hodge ideals, also called weighted multiplier ideals.
We show that several results satisfied by the weighted multiplier ideals can be generalized
under suitable conditions.

Let X be a smooth complex variety of dimension n. To an effective reduced divisor D
on X one can associate a sequence of ideal sheaves Ip(D) ⊆ OX , called the Hodge ideals
of D and studied in a series of papers [MP19a],[MP18],[MP19b], [MP20b], [MP20a]. They
arise from the theory of mixed Hodge modules of M. Saito, which induces a Hodge filtration
F•OX(∗D) by coherent OX -modules on OX(∗D), the sheaf of functions with poles along
D, seen as a left DX -module. This D-module underlies the mixed Hodge module j∗QH

U [n],
where j : U = X \D ↪→ X. Saito showed that the Hodge filtration is contained in the pole
order filtration, that is,

FpOX(∗D) ⊆ OX((p+ 1)D)

for all p ≥ 0. Consequently, we can define the Hodge ideal Ip(D) by

FpOX(∗D) = OX((p+ 1)D)⊗ Ip(D).

The DX -module OX(∗D) is also endowed with a weight filtration W•OX(∗D) by DX -
submodules. The Hodge filtration of these submodules satisfies

FpWn+lOX(∗D) ⊆ FpOX(∗D) ⊆ OX((p+ 1)D),

and similarly we can define the weighted Hodge ideals by

FpWn+lOX(∗D) = OX((p+ 1)D)⊗ IWl
p (D).

The weighted Hodge ideals form a chain of inclusions

IW0
p (D) ⊆ IW1

p (D) ⊆ · · · ⊆ IWn
p (D).
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We can always understand the two extreme ideals in this chain. The first element in the
list admits an easy description:

IW0
p (D) = OX(−(p+ 1)D).

On the other end, the last ideal in this chain is the usual p-th Hodge ideal, that is,

Ip(D) = IWn
p (D).

Unlike IW0
p (D), for all the other degrees, the support of the scheme defined by IWl

p (D) is
contained in the singular locus of D.

Birational definition We give an alternative description of the weighted Hodge ideals
in terms of a resolution of singularities. Let f : Y → X be a resolution of singularities
of the pair (X,D) which is an isomorphism over X \ D, and let E := (f∗D)red. This
description stems from the birational definition of Hodge ideals in [MP19a, §9], and uses
right D-modules. The DY -module ωY (∗E) admits a filtered resolution by DY -modules given
by

B• = 0 → DY → Ω1
Y (logE)⊗OY

DY → · · · → ωY (E)⊗OY
DY → 0.

Similarly, using the weight filtration on the sheaves of logarithmic p-forms (see (1.4)), we
show that the complex

WlB
• = 0 → DY →WlΩ

1
Y (logE)⊗OY

DY → · · · →WlωY (E)⊗OY
DY → 0

is filtered quasi-isomorphic to the DX -module Wn+lω(∗E) (see Proposition 4.1).

The DX -module ωX(∗D) can be described using the filtered resolution of ωY (∗E) de-
scribed above. More precisely, we can define the complex A• by

0 → f∗DX → Ω1
Y (logE)⊗OY

f∗DX → · · · → ωY (E)⊗OY
f∗DX → 0

placed in degrees −n, . . . , 0, and we have that,

R0f∗A
• ∼= ωX(∗D)

(see [MP19a, §9]). To give the alternative description of the weighted Hodge ideals, we
introduce the complex C•

l,p−n defined as

0 → f∗Fp−nDX →WlΩ
1
Y (logE)⊗OY

f∗Fp−n+1DX → · · · →WlωY (E)⊗OY
f∗FpDX → 0

and we show that the image of

R0f∗C
•
l,p−n → R0f∗A

• = ωX(∗D)

is precisely Fp−nWn+lωX(∗D) = IWl
p (D)⊗ ωX((p+ 1)D) (see Proposition 4.3).

Description of weighted Hodge ideals using the V -filtration. A very convenient local
description of Hodge ideals was given in terms of the Kashiwara-Malgrange V -filtration of
the graph embedding i+OX in [MP20b, Theorem A’] (see (5.1)), which works in the more
general setting of Hodge ideals of Q-divisors. In this case, we suppose that the reduced
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divisor D ⊆ X can be defined by a regular function f ∈ OX(X). Weighted Hodge ideals
admit a similar description.

Theorem A. Let X be a smooth complex variety and D a reduced divisor defined by a
regular function f ∈ OX(X). Then,

IWl
p (D) =


p∑

j=0

Qj(1)f
p−jvj : v =

p∑
j=0

vj∂
j
t δ ∈ V 1i+OX and (t∂t)

lv ∈ V >1i+OX

 .

The proof is based on two ideas. First, we can relate the Hodge filtration of V 1i+OX

with that of OX(∗D) (see 5.2). Second, the weight filtration on the nearby cycles sheaf
can be related to that of the local cohomology sheaf (Proposition 5.3). This is enough to
understand all the weighted Hodge ideals in the case when D only has isolated weighted-
homogeneous singularities (see Remark 5.7).

The description in Theorem A is useful to relate the weighted Hodge ideals with some
invariants of the singularities, like the minimal exponent. Recall that to the variety D ⊆ X
we can associate the Bernstein-Sato polynomial bD(s). The polynomial (s+1) divides bD(s),

and we denote b̃D(s) = bD(s)/(s+1). The negative of the largest root of b̃D(s) is called the
minimal exponent of a D and is denoted α̃D. This invariant encodes important properties
of the singularities of D. For instance, it is a refined version of the log-canonical threshold,
since lct(X,D) = min{α̃D, 1}. In particular, this implies that (X,D) is log-canonical if and
only if α̃D ≥ 1. Moreover, it is a result of Saito that D has rational singularities if and only
if α̃D > 1.

The notions of log-canonicity and rationality can be described in terms of weighted Hodge
ideals. Recall that 0-th weighted Hodge ideals, or weighted multiplier ideals, form a sequence
of ideals interpolating between the adjoint ideal and a multiplier ideal. This is the case,
as IW1

0 (D) = adj(D) (see for instance [Ola22, Theorem A]) and I0(D) = J ((1 − ε)D) for
0 < ϵ ≪ 1 [BS05]. These two ideals identify if a singularity is respectively rational or
log-canonical. We give an analogous description for the higher weighted Hodge ideals. The
Hodge ideal Ip(D) is trivial if and only if α̃D ≥ p+ 1, in which case we say that (X,D) is
p-log-canonical. Also, the weighted Hodge ideal IW1

p (D) is trivial if and only if α̃D > p+ 1
(see Corollary 5.10), which some authors referred to as D being p-rational. The rest of the
p-weighted Hodge ideals filter and measure the “distance” between (X,D) having p-log-
canonical singularities and D being p-rational.

Isolated singularities. Recall that the weighted Hodge ideals satisfy

I
Wl−1
p (D) ⊆ IWl

p (D).

The difference between the two ideals can be described by the coherent sheaf Fp gr
W
n+l OX(∗D)

(see (6.1)). If D has isolated singularities, we give a description of the dimension of this
sheaf at the singular points in terms of a resolution of singularities. For this, possibly after
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restricting to an open set, assume D has one isolated singularity x ∈ D. In this case, there
exists a pure Hodge structure Hl for l ≥ 2, such that the dimension of their Hodge pieces
describes the desired dimension. More concretely,

(0.1) dim(Fp(gr
W
n+l OX(∗D))x) =

p∑
r=0

(
n+ p− r

p− r

)
dim(Grn−r

F Hl)

(see §6 for more details). For this reason, to find the difference between two consecutive

weighted Hodge ideals, it is enough to compute the dimensions of the spaces Grn−p
F Hl.

Theorem B. Let g : D̃ → D be a log-resolution of singularities that is an isomorphism

outside of x. Let G ⊆ D̃ be the exceptional divisor. Then

dim(Grn−p
F Hl) = hp,n−l−p(Hn−2(G))

if l ≥ 3, and

dim(Grn−p
F H2) = hp,n−p−2(Hn−2(G))− hn−p−1,p+1(Hn(G)),

where Hk(G) = Hk(G,C) and hp,q(Hk(G)) = dim(Hp,q(GrWp+qH
k(G))).

When p = 0 the second summand in the description of dim(Grn−p
F H2) is 0 because the

dimension of G is n− 2, and therefore these dimensions are described as Hodge numbers of
the middle cohomology of G. For p ≥ 1 we cannot expect this term to be 0 in general, but
this dimension admits a geometric interpretation (see Remark 6.8).

Vanishing results. Weighted Hodge ideals satisfy global results under suitable condi-
tions. Let X be a smooth projective variety and D an ample divisor with at most isolated
singularities. Under this assumptions, when p = 0 we have that

H i(X,ωX(D)⊗ IWl
0 (D)) = 0

for i ≥ 1 and l ≥ 2 [Ola22, Theorem E]. To generalize this result for all p ≥ 1, we require

the condition that IWl
p−1(D) = OX .

Theorem C. Let X be a smooth projective variety of dimension n, and D an ample reduced
effective divisor with at most isolated singularities. Suppose that IW1

p−1(D) is trivial. Then

(1) For l ≥ 2 and i ≥ 2,

H i(X,ωX((p+ 1)D)⊗ IWl
p (D)) = 0.

(2) If Hj(X,Ωn−j
X ((p− j + 1)D)) = 0 for all 1 ≤ j ≤ p, then

H1(X,ωX((p+ 1)D)⊗ IWl
p (D)) = 0

for l ≥ 2.

When l = 1 and i = 1 the vanishing does not hold in general. For an example see Re-
mark 7.2. A Kodaira-type vanishing result is also satisfied for all l ≥ 1, and the proof is
based on a vanishing result by Saito [Sai90, Proposition 2.33] (see Proposition 8.1).



WEIGHTED HODGE IDEALS OF REDUCED DIVISORS 5

Applications. The global and local results we have discussed can be used to obtain results
about the geometry of certain isolated singularities of hypersurfaces in Pn. This is because
the vanishing condition in Theorem C is satisfied when X is a toric variety.

Corollary D. Let D ⊆ Pn be a hypersurface of degree d with at most isolated singularities.
Let Zl,p be the scheme defined by IWl

p (D). Then,

H0(Pn,OPn(k)) →→ H0(Pn,OZl,p
)

for k ≥ (p+ 1)d− n− 1 if l ≥ 2, and k ≥ (p+ 1)d− n if l ≥ 1.

This result gives a bound on a certain type of isolated singularities we describe next. For
simplicity, suppose D has at most one isolated singularity x ∈ D, and assume α̃D = p+ 1.
We describe first the case p = 0. This case corresponds to a log-canonical and not rational
singularity. In this case, according to (0.1), the length of the scheme described by IW1

0 (D)
is determined by Gr0F (H

n−2(G)), using the notation of Theorem B. Ishii proved that in this

case, dim(Gr0F (H
n−2(G))) = 1 [Ish85, Proposition 3.7]. This means that the ideal IW1

0 (D)
is the maximal ideal of x in X, and that there exists exactly one degree l ≥ 2 such that

dim(GrnF (Hl)) = 1,

while the dimension for the other degrees is 0. A log-canonical singularity is of type (0, n−l)
in this case [Ish85, Definition 4.1].

Assume now that α̃D = p + 1 for an p ∈ Z≥0, and that D has at most one isolated
singularity x ∈ D. In this case, we have an analogous picture. Namely, the ideal IW1

p (D)
is the maximal ideal of x in X (see Proposition 9.1), or equivalently, as Ip(D) = OX , the
length of the scheme described by IW1

p (D) is 1. This in particular means that

Grn−r
F Hl = 0

for l ≥ 2 and 0 ≤ r ≤ p − 1 by (0.1) and Theorem B. Moreover, by the same results, we
know that there exists exactly one degree l ≥ 2 such that

dim(Grn−p
F Hl) = 1,

while the dimension for all the other degrees is 0. Related invariants in similar conditions
have been studied by Friedman and Laza in [FL22, Theorem 6.11 and Corollary 6.14].

In analogy to the case of log-canonical singularities, we call the singularity described
above of type (p, n − l − p) (see Definition 9.3). Weighted homogeneous singularities
with α̃f = p + 1 are examples of singularities of type (p, n − 2 − p) and the origin in
Z(x2+y2+z2+u2w2+u4+w5) ⊆ A5 gives an example of a singularity of type (1, 5−3−1) =
(1, 1) (see Example 9.5). For a hypersurface of Pn with at most isolated singularities and
α̃D = p+ 1, we give a bound on the number of these singularities (see Corollary 9.6).

Restriction theorem. Finally, we study the behavior of weighted Hodge ideals of a pair
(X,D) under the restriction of a hypersurface of X. Let H ⊆ X be a smooth hypersurface,
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and DH the restriction of D to H. If DH is reduced, then we can also consider the pair
(H,DH) and their respective weighted Hodge ideals.

Theorem E. Let X be a smooth variety and D an effective reduced divisor. Let H ⊆ X be
a smooth divisor such that H ⊊ Supp(D) and DH = D

∣∣
H

is reduced. Then, for every p ≥ 0
and l ≥ 0 we have

IWl
p (DH) ⊆ IWl

p (D) · OH .

Moreover, if H is general, then we have an equality.

This is the analogue of the Restriction Theorem for Hodge ideals [MP18, Theorem A],
and for multiplier ideals [Laz04, Theorem 9.5.1].

Acknowledgements. I would like to thank Mircea Mustaţă and Mihnea Popa for their
constant support and many conversations during the project. I am also very grateful to the
anonymous referees for their feedback on improving the presentation of the article and for
suggesting a simpler proof of Lemma 5.4, explained in Remark 5.5.

B. Preliminaries

1. Mixed Hodge modules. In this section, we recall some facts about mixed Hodge
modules and set up the notation we use throughout this paper.

Let X be a smooth variety of dimension n. Mixed Hodge modules introduced by Saito
in [Sai88] are the main object used throughout this article. For a graded-polarizable mixed
Hodge module M , we denote the underlying left regular holonomic DX -module by M. In
some contexts, it is more useful to use right DX -modules. Recall that if M is a left DX -
module, the corresponding right DX -module is M⊗OX

ωX , where ωX is the canonical sheaf.
We mostly use left D-modules, and in case we are using right D-modules instead, we will
say it explicitly.

A mixed Hodge moduleM is endowed with a weight filtration, which we denote byW•M ,
and

grWl M :=WlM/Wl−1M

is the quotient, which is a polarizable Hodge module of weight l. We denote by F•M the
Hodge filtration. The de Rham complex is defined as:

DR(M) =
[
M → Ω1

X ⊗OX
M → · · · → ωX ⊗OX

M
]
[n],

and the Hodge filtration of M induces a filtration on this complex:

FpDR(M) =
[
FpM → Ω1

X ⊗OX
Fp+1M → · · · → ωX ⊗OX

Fp+nM
]
[n].

The p-th subquotient of this filtration is the complex

grFp DR(M) =
[
grFp M → Ω1

X ⊗OX
grFp+1M → · · · → ωX ⊗OX

grFp+nM
]
[n].

Let D be a reduced effective divisor. The mixed Hodge module we mostly study in this
paper is j∗QH

U [n], where j : U = X ∖ D ↪→ X, whose underlying DX -module is the sheaf
of functions with poles along D denoted by OX(∗D). To study OX(∗D), it is sometimes
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convenient to use a resolution of singularities, and the properties of pushforwards. Fix a
log-resolution of singularities of (X,D), that is, a proper birational morphism f : Y → X
such that Y is smooth, it is an isomorphism over U , and (f∗D)red = E is a divisor with
simple normal crossings. In this setup, we have that

(1.1) f+OY (∗E) ∼= H0f+OY (∗E) ∼= OX(∗D)

(see for example [MP19a, Lemma 2.2]). Since E is a simple normal crossings divisor, the
weight filtration of the DY -module OY (∗E) can be described in terms of the intersections
of its irreducible components. The lowest degree of the weight filtration is n = dimY , that
is:

Wn−1OY (∗E) = 0.

The lowest piece corresponds to the canonical Hodge module of Y :

WnOY (∗E) ∼= OY .

To describe the rest of the subquotients, we introduce the following very useful notation.
Let

E =
⋃
i∈I

Ei.

The variety

E(l) =
⊔
J⊆I
|J |=l

EJ ,

with EJ =
⋂
j∈J

Ej , is a smooth and possibly disconnected variety. We denote il : E(l) → Y

the map such that on each component is the inclusion. We have that

(1.2) grWn+l OY (∗E) ∼= il+OE(l)

with a Tate twist (see [KS21, Prop 9.2]).

In order to describe the weight filtration of a pushforward of a projective morphism, a
useful tool is to use the spectral sequence associated to the weight filtration:

(1.3) Ep,q
1 = Hp+qf+(gr

W
−p OY (∗E)) ⇒ Hp+qf+OY (∗E),

which degenerates at E2, and there is an isomorphism:

Ep,q
2

∼= grWq Hp+qf+OY (∗E)

[Sai90, Proposition 2.15].

Finally, recall that the sheaf of p-forms with logarithmic poles along E denoted by
Ωp
Y (logE) are endowed with a weight filtration. This increasing filtration consists of sub-

sheaves

(1.4) WlΩ
p
Y (logE) ⊆ Ωp

Y (logE)



8 SEBASTIÁN OLANO

such that if z1, . . . , zn are local coordinates on an open set V , and E is given by the equation

z1 · · · zr = 0,

then in V , WlΩ
p(logE) is a OV module generated by elements of the form

dzi1
zi1

∧ · · · ∧ dzis
zis

∧ dzj1 ∧ · · · ∧ dzjp−s

with il ≤ r and s ≤ k (see [CEZGL14, 3.4.1.2] for more details). For I = {i1, . . . , is} and
J = {j1, . . . , jp−s} we use the notation

dzI
zI

∧ dzJ =
dzi1
zi1

∧ · · · ∧ dzis
zis

∧ dzj1 ∧ · · · ∧ dzjp−s .

C. Characterizations

2. Definition. In this section, we introduce weighted Hodge ideals using the theory of
mixed Hodge modules.

A fundamental result by Saito about the Hodge filtration on OX(∗D) states that

FpOX(∗D) ⊆ OX((p+ 1)D)

(see [Sai93, Proposition 0.9]). The definition of Hodge ideals follows from this result. These
ideals are denoted by Ip(D), and are defined using the formula

FpOX(∗D) = Ip(D)⊗ OX((p+ 1)D)

(see [MP19a, Definition 9.4]). In this article, we study weighted Hodge ideals which are
defined similarly using the weight filtration with which OX(∗D) is endowed. The Hodge
filtration of the sub-DX modules Wn+lOX(∗D) satisfies

FpWn+lOX(∗D) ⊆ FpOX(∗D) ⊆ OX((p+ 1)D)

for all p ≥ 0.

Definition 2.1 (Weighted Hodge ideals). Let X be a smooth complex variety and D a
reduced divisor. For l ≥ 0 and p ≥ 0, we define the ideal sheaf IWl

p (D) on X by the formula

FpWn+lOX(∗D) = IWl
p (D)⊗ OX((p+ 1)D).

We call IWl
p (D) the l-th weighted p-th Hodge ideal of D.

There is in fact a chain of inclusions

(2.2) IW1
p (D) ⊆ IW2

p (D) ⊆ · · · ⊆ IWn−1
p (D) ⊆ IWn

p (D)

for all p ≥ 0. Indeed, the weight filtration of OX(∗D) is an increasing filtration, hence

FpWn+lOX(∗D) ⊆ FpWn+l+1OX(∗D),

or equivalently

OX((p+ 1)D)⊗ IWl
p (D) ⊆ OX((p+ 1)D)⊗ I

Wl+1
p (D).
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3. Simple normal crossings divisor. Weighted Hodge ideals can be described com-
pletely when the reduced divisor D has simple normal crossings. In this case, the Hodge
filtration of OX(∗D) is fully understood, and from this information we can deduce the Hodge
filtration of Wn+lOX(∗D).

Let D be a simple normal crossings divisor. In this case, the Hodge filtration of OX(∗D)
admits a simple description:

(3.1) FpOX(∗D) = FpDX · OX(D)

if p ≥ 0, and 0 otherwise. Using this, one obtains a local description of the Hodge ideals.
Let x1, . . . , xn be coordinates around z ∈ X, such that D is defined by (x1 · · ·xr = 0). For
every p ≥ 0, the ideal Ip(D) is generated around z by

(3.2) {xa11 · · ·xarr : 0 ≤ ai ≤ p,
∑

ai = p(r − 1)}

[MP19a, Proposition 8.2]. Weighted Hodge ideals of D admit a similar local description.

Proposition 3.3. Let x1, . . . , xn be coordinates around z ∈ X, such that D is defined by
(x1 · · ·xr = 0). Then, for every p ≥ 0 and l ≤ r, IWl

p (D) is generated around z by

{xa1j1 · · ·x
al
jl
xp+1
I\J : J = {j1, . . . , jl} ⊆ I, 0 ≤ ai ≤ p and

∑
ai = p(l − 1)},

where I = {1, . . . , r}. For l ≥ r, IWl
p (D) = Ip(D) around z.

Proof. The Hodge filtration of Wn+lOX(∗D) also admits a simple description:

(3.4) FpWn+lOX(∗D) = FpDX · F0Wn+lOX(∗D).

Indeed, this follows from the fact that grWn+l OX(∗D) ∼= il+OE(l) with a Tate Twist, so that
the analogous statement of (3.4) is true for il+OE(l) (see e.g. [Sai09, Remark 1.1 iii].)

For the rest of the proof we use right D-modules. By [Ola22, Proposition 4.1],

F0Wn+lωX(∗D) =WlωX(D).

Around z, WlωX(D) is generated by {
ω

xJ

}
J⊆I, |J |=l

where ω is the standard generator of ωX . It is clear that WlωX(D) · FpDX is generated by{
ω

x1+b1
j1

· · ·x1+bl
jl

:
∑

bi = p, J ⊆ I, and |J | = l

}
.

The result follows from the equation ω

x
1+b1
j1

···x1+bl
jl

= ω

xp+1
I

(xp−b1
j1

· · ·xp−bl
jl

xp+1
I\J ). The last

statement follows from the fact that, if l > r, around z, WlωX(D) = ωX(D). □
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4. Birational definition. Let X be a smooth variety and D a reduced divisor. Consider
a log-resolution f : Y → X of the pair (X,D), which is an isomorphism over X \ D, and
denote E = (f∗D)red. A birational definition is given for Hodge ideals in [MP19a, §9]. In
this section, we give a similar equivalent definition for weighted Hodge ideals. For the rest
of this section we use right D-modules, as it is more convenient for the construction. Recall
that the right DX -module corresponding to OX(∗D) is ωX(∗D), and

Fp−nωX(∗D) = Ip(D)⊗ ωX((p+ 1)D).

Consider the following complex which we denote by A•:

0 → f∗DX → Ω1
Y (logE)⊗OY

f∗DX → · · · → ωY (E)⊗OY
f∗DX → 0

placed in degrees −n, . . . , 0. The results in [MP19a, §3] say that the complex A• represents

the object ωY (∗E)
L
⊗DY

DY→X in the derived category of filtered right f−1DX -modules.
Moreover, R0f∗A

• ∼= ωX(∗D).

For p ≥ 0 define the subcomplex C•
p−n = Fp−nA

• of A• by

0 → f∗Fp−nDX → Ω1
Y (logE)⊗OY

f∗Fp−n+1DX → · · · → ωY (E)⊗OY
f∗FpDX → 0.

The pushforward of this complex admits the following interpretation:

R0f∗C
•
p−n = Fp−nωX(∗D) = Ip(D)⊗ ωX((p+ 1)D)

by [MP19a, Remark 9.3, Corollary 12.1].

We prove similar results in order to obtain a birational definition. Consider the complex
B•:

0 → DY → Ω1
Y (logE)⊗OY

DY → · · · → ωY (E)⊗OY
DY → 0

in degrees −n, . . . , 0, where the map

Ωp
Y (logE)⊗ DY

d′→ Ωp+1
Y (logE)⊗ DY

is given by ω⊗P → dω⊗P+
∑

(dzi ∧ ω)⊗ ∂iP . The complex B• is filtered quasi-isomorphic
to the object ωY (∗E) in degree 0 [MP19a, Proposition 3.1].

Proposition 4.1. The complex

WlB
• = 0 → DY →WlΩ

1
Y (logE)⊗OY

DY → · · · →WlωY (E)⊗OY
DY → 0

in degrees −n, . . . , 0 is quasi-isomorphic to Wn+lωY (∗E).

Proof. We see first that the complex WlB
• is exact in degrees −n, . . . ,−1. Fix a degree

−p. We need to see that

WlΩ
n−p−1
Y (logE)⊗ DY →WlΩ

n−p
Y (logE)⊗ DY

b→WlΩ
n−p+1
Y (logE)⊗ DY

is exact. Let x ∈ X be a point and {z1, . . . , zn} be a set of coordinates in an open neighbor-
hood around the point. We localize at x, take the completion, and identify the completion
of OX,x with CJz1, . . . , znK. Let η ∈ ker b̂. By exactness of B•, there exists ω in the comple-

tion of Ωn−p−1
Y (logE) ⊗ DY such that d′ω = η (we keep calling d′ the differentials of this
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complex). We can write ω =
∑
gI,J,α

dzI
zI

∧ dzJ ⊗ ∂α, with gI,J,α ∈ CJz1, . . . , znK, since every
element P ∈ DY can be written as P =

∑
gα∂

α. Moreover, expanding each gI,J,α, we can
write

ω =
∑

Cβ
I,J,αz

β dzI
zI

∧ dzJ ⊗ ∂α

so that no zi that appears in zI divides Cβ
I,J,αz

β. From this description, it follows that for

each summand Cβ
I,J,αz

β dzI
zI

∧dzJ⊗∂α, |I| determines the weight where the form Cβ
I,J,αz

β dzI
zI

∧
dzJ lies.

Next, we write, ω = ω≤l+ω>l, where the first term consists of the summands with |I| ≤ l,
and the latter of the terms with |I| > l. Using the description of d′, we see that d′ω≤l is in

the completion of WlΩ
n−p
Y (logE)⊗ DY , and each summand of d′ω>l is not. Indeed,

d′(Cβ
I,J,αz

β dzI
zI

∧ dzJ ⊗ ∂α)

=
∑
k

Cβ
I,J,αβkz

β−ekdzk ∧
dzI
zI

∧ dzJ ⊗ ∂α +
∑
k

dzk ∧ (Cβ
I,J,αz

β dzI
zI

∧ dzJ)⊗ ∂k∂
α

=
∑
k

((−1)|I|Cβ
I,J,αβk) z

β−ek
dzI
zI

∧ (dzk ∧ dzJ)⊗ ∂α

+
∑
k

((−1)|I|Cβ
I,J,α) z

β dzI
zI

∧ (dzk ∧ dzJ)⊗ ∂k∂
α.

Since η ∈ ker b̂, d′ω>l = 0, and d′ω≤l = η, with ω≤l in the completion of WlΩ
n−p−1
Y (logE)⊗

DY .

Consider now the map,

WlωY (E)⊗OY
DY →Wn+lωY (∗E)

given by ω
f ⊗ P → ω

f · P . Fixing a degree of the Hodge filtration, and using the description

of the Hodge filtration of Wn+lωY (∗E) (see for example Proposition 3.3), we see that this
map is surjective. That the kernel is the image of WlΩ

n−1
Y (logE) ⊗OY

DY follows from
[MP19a, Proposition 3.1] and an argument similar to the one above.

□

Consider next the complex

WlA
• = 0 → f∗DX →WlΩ

1
Y (logE)⊗OY

f∗DX → · · · →WlωY (E)⊗OY
f∗DX → 0.

We have that WlA
• =WlB

•⊗DY
DY→X , where DY→X = OY ⊗f−1OX

f−1DX is the transfer
module. Note that when we see it as an OY module, we simply write f∗DX .

Lemma 4.2. The complexWlA
• representsWn+lωY (∗E)

L
⊗DY

DY→X in the derived category
of filtered right f−1DX-modules.
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Proof. It is enough to show that the elementsWlB
k are acyclic with respect to −⊗DY

DY→X .
For any k consider the following spectral sequence:

Ep,q
2 = TorDY

p (TorOY
q (WlΩ

k
Y (logE),DY ),DY→X) ⇒ TorOY

p+q(WlΩ
k
Y (logE), f∗DX)

[Wei94, Theorem 5.6.6]. As DY is a locally free OY -module, then Ep,q
2 = 0 for q ̸= 0.

Therefore,

TorDY
p (WlΩ

k
Y (logE)⊗OY

DY ,DY→X) ∼= TorOY
p (WlΩ

k
Y (logE), f∗DX) = 0

for p ̸= 0, where the last equality follows from the fact that f∗DX is locally free.

□

The map

R0f∗(Wn+lωY (∗E)
L
⊗DY

DY→X)
φ→ R0f∗(ωY (∗E)

L
⊗DY

DY→X)

is precisely the morphism

H0f+(Wn+lωY (∗E)) → H0f+(ωY (∗E)) = ωX(∗D),

whose image is Wn+lωX(∗D). Moreover, the complex C•
p−n described above corresponds to

the Fp−n(ωY (∗E)
L
⊗DY

DY→X) using the identification

ωY (∗E)
L
⊗DY

DY→X
∼= B• ⊗DY

DY→X .

By strictness, there is an injective map

R0f∗C
•
p−n ↪→ R0f∗A

• ∼= ωX(∗D)

whose image is Fp−nωX(∗D) = Ip(D)⊗ ωX((p+1)D) (see [MP19a, Sections 4, 9, and 12]).

Similarly, we define C•
l,p−n by

0 → f∗Fp−nDX →WlΩ
1
Y (logE)⊗OY

f∗Fp−n+1DX → · · · →WlωY (E)⊗OY
f∗FpDX → 0

which corresponds to Fp−n(Wn+lωY (∗E)
L
⊗DY

DY→X) under the identification

Wn+lωY (∗E)
L
⊗DY

DY→X
∼=WlB

• ⊗DY
DY→X

given by Lemma 4.2.

Proposition 4.3. Using the notation above,

IWl
p (D)⊗ ωX((p+ 1)D) = im[R0f∗C

•
l,p−n ↪→ R0f∗WlA

• → R0f∗A
• ∼= ωX(∗D)].

Proof. By strictness, we have an injective map

R0f∗C
•
l,p−n ↪→ R0f∗WlA

•

whose image is Fp−nH
0f+Wn+lωX(∗D) (see for instance [MP19a, §4]). Taking the compo-

sition
R0f∗C

•
l,p−n ↪→ R0f∗WlA

• → R0f∗A
• ∼= ωX(∗D),
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and using strictness in the middle morphism (since it underlies a morphism of mixed Hodge
modules), the image corresponds to Fp−nWn+lωX(∗D) = IWl

p (D)⊗ ωX((p+ 1)D). □

The description in Proposition 4.3 for IWl
0 (D) coincides with the description in [Ola22,

Proposition 3], since f∗WlωY (E) → f∗ωY (E) is an inclusion. The complex C•
l,1−n also has

a simple description. Recall that by definition

C•
l,1−n = [WlΩ

n−1
Y (logE) →WlωY (E)⊗ f∗F1DX ]

in degrees -1 and 0. Moreover, the map

Ωn−1
Y (logE) → ωY (E)⊗ f∗F1DX

is injective [MP19a, Lemma 3.4]. Using the fact that WlΩ
n−1
Y (logE) ↪→ Ωn−1

Y (logE) and
WlωY (E) ⊗ f∗F1DX ↪→ ωY (E) ⊗ f∗F1DX are injective (since F1DX is a locally free OX -
module), we obtain that the differential in C•

l,1−n is also an inclusion. Let Fl,1 be the
cokernel. This means that

IWl
1 (D)⊗ ωX(2D) = im[f∗Fl,1 → ωX(D)].

This map can be interpreted by using the complex C•
1−n. Indeed, let F1 be the cokernel of

the differential in C•
1−n. We have an induced map Fl,1 → F1. Since f∗F1 = I1(D)⊗ωX(2D),

IWl
1 (D)⊗ ωX(2D) = im[f∗Fl,1 → f∗F1].

Note that since weighted Hodge ideals were defined in terms of the Hodge and weight
filtrations of OX(∗D), the constructions presented in this section are independent of the
resolution of singularities.

5. Weighted Hodge ideals and V -filtration. Let X be a smooth variety and D be
an effective reduced divisor defined by the global equation f ∈ OX(X). The Hodge ideals
Ip(D) can be described using the V -filtration of i+OX , where i is the graph embedding
defined by f . Namely,

(5.1) Ip(D) =


p∑

j=0

Qj(1)f
p−jvj :

p∑
j=0

vj∂
j
t δ ∈ V 1i+OX

 ,

where Qj(x) =
∏j−1

i=0 (x + i), [MP20b, Theorem A’]. An equivalent description is obtained
using the following map:

τ : V 1i+OX → OX(∗D)

given by

τ

(
p∑

i=0

vi∂
i
tδ

)
=

p∑
i=0

Qi(1)
vi
f i+1

.

The map τ1 is a surjective morphism of DX -modules, and

(5.2) Ip(D)⊗ OX((p+ 1)D) = FpOX(∗D) = τ(Fp+1V
1i+OX),

1The map τ corresponds to τ1 in the notation of [MP20a]. See §1 for the discussion about the reduced
case.
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see [MP20a, Proposition 5.4 and Lemma 5.1]. Moreover, the map τ induces a map

τ̄ : gr1V i+OX → OX(∗D)/OX .

Indeed, it is enough to see that τ(V >1i+OX) ⊆ OX . This follows from the fact that

V >1i+OX = V 1+αi+OX = t · V αi+OX , with α > 0, and that if j > 0, tu∂jt δ = fu∂jt δ −
ju∂j−1

t δ, and tuδ = fuδ. For v =
∑p

j=0 vj∂
j
t δ ∈ V >1i+OX , there exists u =

∑p
j=0 uj∂

j
t δ ∈

V αi+OX such that, tu = v. Hence,

τ(v) = τ(fu0δ +

p∑
j=1

(fuj∂
j
t δ − juj∂

j−1
t δ)) = u0,

as

Qj(1)
fu

f j+1
− jQj−1(1)

u

f j
= 0

because Qj(1) = jQj−1(1).

The DX -module gr1V i+OX underlies the mixed Hodge module ψf,1OX and its weight
filtration can be described in terms of the nilpotent operator t∂t. In order to complete the
description in Theorem 5.6, we first need to show that the map τ̄ also preserves the weight
filtration.

Proposition 5.3. The map τ̄ sends the weight and Hodge pieces to the same image as the
map τDX

that underlies a morphism of mixed Hodge modules

τH : ψf,1OX(−1) → H1
D(OX).

Proof. The map τ̄ is surjective and using its description, we observe that its kernel is the
image of the map ∂tt − 1 on gr1V i+OX . The same is true for the map τDX

. Indeed, the
map ∂tt− 1 underlies the composition V ar ◦ can on ψf,1OX . As can : ψf,1OX → ϕf,1OX is
surjective because i+OX has strict support (see for instance [Sch14, §11]), the cokernel of
V ar ◦ can coincides with the cokernel of

V ar : ϕf,1OX → ψf,1OX(−1).

The cokernel of V ar is isomorphic to iD∗H1i!DOX , where iD : D → X is the inclusion

[Sai90, Corollary 2.24]. Moreover, iD∗H1i!DOX is isomorphic to H1
D(OX) [Sai09, §2.2]. This

means that τ̄ and τDX
could only differ by a DX -automorphism of H1

D(OX) and the result
is a consequence of Lemma 5.4. □

Lemma 5.4. A DX-automorphism of H1
D(OX) preserves the Hodge and weight filtration.

Proof. We can restrict to an open affine subset. Let X = SpecR where D is defined
by f ∈ R, and φ an DR-automorphism of Rf/R. Let m ≥ 2, then φ[ 1

fm ] = [ gmfm ] for

some gm ∈ R, since fmφ[ 1
fm ] = 0. Using that φ is DR-linear, we see that for every

T ∈ DerC(R), T (gm) ∈ (fm−1). This implies that around each smooth point of P ∈ D,
using a regular system of parameters, we have an h such that h(P ) ̸= 0, and gm − gm(P ) ∈
fm ·Rh. Restricting the automorphism to the open set defined by h, we see that φh acts by
multiplying by a constant. This means that this constant doesn’t depend on m, and after
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restricting to double intersections, we see that this constant doesn’t depend on the point.
Let λ be the constant. Since φ−λ · Id is 0 on all the smooth points, φ = λ · Id everywhere.
In particular, φ preserves the Hodge and the weight filtration. □

We are very grateful to Mircea Mustaţă for suggesting the argument of Lemma 5.4.

Remark 5.5. A simpler proof of the Lemma was suggested by a referee. Using the
Riemann-Hilbert correspondence, and Verdier duality, it is enough to verify the conclu-
sion of the Lemma on the perverse sheaf QD[n− 1]. We leave the original proof to have an
argument using only D-modules.

A consequence of the result above, is that we can write a description of the weighted
Hodge ideals in a similar way to (5.1). Let WlV

1i+OX be the submodule of V 1i+OX which
maps to Wn+l−2 gr

1
V i+OX via the canonical projection.

Proposition 5.6. Using the notation above,

IWl
p (D) =


p∑

j=0

Qj(1)f
p−jvj :

p∑
j=0

vj∂
j
t δ ∈WlV

1i+OX

 .

Proof. It follows from Proposition 5.3 that τ(Fp+1WlV
1i+OX) = FpWn+lOX(∗D) = IWl

p (D)⊗
OX((p+ 1)D). □

The result above can be simplified even more using the description of the weight filtration
of ψf,1OX , and that is the statement of Theorem A.

Proof of Theorem A. First, we note that if v ∈ V 1i+OX , then τ(t∂tv) = 0. Indeed, let

v =
∑p

j=0 vj∂
j
t δ ∈ V 1i+OX , then

t∂tv =

p∑
j=0

(fvj∂
j+1
t δ − (j + 1)vj∂

j
t δ),

and

τ(t∂tv) =

p∑
j=0

(
Qj+1(1)

fvj
f j+2

− (j + 1)Qj(1)
vj
f j+1

)
= 0.

The weight filtration of ψf,1OX admits the following description for k ≥ 0:

Wn−1+kψf,1OX =
∑
m≥0

(t∂t)
m(ker (t∂t)

2m+k+1)

(see [Sai94, 2.7] and for the monodromy filtration see e.g. [SZ85, Remark 2.3]). The only
piece that is not an image of (t∂t) is ker (t∂t)

k+1. That means that the subset ker (t∂t)
l ⊆

WlV
1i+OX has the same image as WlV

1i+OX via τ . □

Remark 5.7. Let (X,D) be a pair such that D has at most isolated weighted homogeneous
singularities. Theorem A gives a complete description of the weighted Hodge ideals using the
description of the V -filtration in [Sai09]. Using the notation above, in this case, (t∂t)

2u ∈
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V >1i+OX for all u ∈ V 1i+OX . For this reason, IW2
p (D) = Ip(D), for all p ≥ 0. An argument

without the use of the V -filtration in the case of p = 0 is described in [Ola22, §10].

A direct application of Theorem A is that we can recover the following result proved in
[MP19a, Theorem C]. The proof we give differs from the one in [MP19a] and is also much
shorter.

Corollary 5.8. Let X be a smooth variety and D an effective reduced divisor. Then

Ip(D) ⊆ adj(D)

for all p ≥ 1.

Proof. Recall that adj(D) = IW1
0 (D) [Ola22, Theorem A]. Moreover, as Ip(D) ⊆ I1(D)

[MP19a, Proposition 13.1], it is enough to prove that I1(D) ⊆ IW1
0 (D).

Let u ∈ I1(D). By (5.1), u = u0f+u1, where f is defining equation ofD, and u0δ+u1∂tδ ∈
V 1i+OX . We also have that

V 1i+OX ∋ (f − t)(u0δ + u1∂tδ) = u1δ,

and
∂t(u1δ) = u1∂tδ + u0δ − u0δ ∈ V >0i+OX .

Finally, as δ ∈ V >0i+OX , then u0fδ = t(u0δ) ∈ V >1i+OX ⊆W1V
1i+OX . This means that

u0fδ + u1δ ∈W1V
1i+OX , hence u0f + u1 ∈ IW1

0 (D). □

There is a relation between the minimal exponent of f and the weighted Hodge ideals.

Recall that if we denote bf (s) the Bernstein-Sato polynomial, and b̃f (s) the reduced one,

we call α̃f the negative of the largest root of b̃f (s). Saito proved in [Sai16] that Ip(D) = OX

if and only if α̃f ≥ p + 1 (c.f. [MP20b, Corollary 6.1]). Moreover, this result also holds in
the case of Q-divisors, and it can be stated in the following form.

Lemma 5.9 ([MP20a, Lemma 1.2]). For an integer p and α ∈ (0, 1],

∂pt δ ∈ V αi+OX ⇔ α̃f ≥ p+ α.

Using these ideas, we obtain the following result for the 1st weighted Hodge ideals.

Corollary 5.10. Using the notation above,

IW1
p (D) = OX if and only if α̃f > p+ 1.

Proof. Suppose first that α̃f > p + 1. Then, by Lemma 5.9, ∂pt δ ∈ V 1i+OX . Moreover,

there exists α ∈ (0, 1] such that α̃f ≥ p+1+α. Again, by Lemma 5.9, ∂p+1
t δ ∈W1V

1i+OX ,

and therefore, IW1
p (D) = OX .

Suppose now that IW1
p (D) = OX . Then, Ip(D) = OX , and in particular δ, ∂tδ, . . . , ∂

p
t δ ∈

V 1i+OX . Moreover, there exists v =
∑p

j=0 vj∂
j
t δ ∈W1V

1i+OX such that
∑p

j=0Qj(1)f
p−jvj =

1. It is enough to show that ∂pt δ ∈W1V
1i+OX . Indeed, by Proposition 5.6 and the injectiv-

ity of t : gr0V i+OX → gr1V i+OX (see e.g. [Sch14, §11]), this means that ∂p+1
t δ ∈ V αi+OX
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with α ∈ (0, 1], and therefore, α̃f ≥ p + 1 + α > p + 1. We argue by induction. Suppose
p = 0. Then v = v0δ and by the second condition, v0 = 1. Hence, δ ∈ W1V

1i+OX . By the
induction hypothesis, we assume now that ∂kt δ ∈W1V

1i+OX for k = 0, . . . , p−1. It follows
from the description of v that

Qp(1)vp = 1− f(

p−1∑
j=0

Qj(1)f
p−1−jvj),

and then

v = ∂pt δ − f(

p−1∑
j=0

Qj(1)f
p−1−jvj)∂

p
t δ +

p−1∑
j=0

vj∂
j
t δ.

The result follows if we show that f∂pt δ ∈W1V
1i+OX , and this is a consequence of f∂pt δ =

t∂t(∂
p−1
t δ) + p∂p−1

t δ ∈W1V
1i+OX .

□

Remark 5.11. In general, we cannot obtain more information about the other p-weighted
Hodge ideals. In [Ola22, §13], the case of isolated log-canonical singularities, that are not
rational, is discussed. This case corresponds to α̃f = 1. By the discussion above, it is clear

that I0(D) = OX and that IW1
0 (D) is not trivial. For l = 2, . . . , n− 1, there are examples of

f where the weighted multiplier ideals IWl
0 (D) are trivial, and other examples where they

are non-trivial [Ish85, Theorem 5.2].

D. Local study

6. Measuring the difference between weighted Hodge ideals. There is a short exact
sequence that arises from the definition of the weight filtration on OX(∗D):

0 →Wn+l−1OX(∗D) →Wn+lOX(∗D) → grWn+l OX(∗D) → 0.

Applying Fp, we obtain the short exact sequence
(6.1)

0 → I
Wn+l−1
p (D)⊗ OX((p+ 1)D) → I

Wn+l
p (D)⊗ OX((p+ 1)D) → Fp gr

W
n+l OX(∗D) → 0.

When D has at most isolated singularities and l ≥ 2, grWn+l OX(∗D) is supported on the
singular points. To simplify the notation, we use the following definition.

Definition 6.2. Suppose D has at most one isolated singularity x ∈ D, and let ix : {x} ↪→
X. For l ≥ 2, we denote by Hl the complex pure Hodge structure of weight n+ l such that

grWn+l OX(∗D) ∼= (ix)+Hl.

In order to describe the dimension of Fp(ix)+Hl, it is enough to describe the dimension

of Grn−k
F Hl for 0 ≤ k ≤ p. This is a consequence of the local description of the Hodge

filtration of (ix)+Hl. Let x1, . . . , xn be a set of coordinates around the point x ∈ X. We
have the following description of the pushforward of Hl as a D-module:

(6.3) (ix)+Hl = (ix)∗Hl ⊗C C[∂1, · · · , ∂n],
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where ∂i =
∂
∂xi

, and

(6.4) Fp(ix)+Hl =
⊕

ν∈Zn
≥0

(ix)∗Fp−|ν|−nHl ⊗ ∂ν ,

where ∂ν = ∂ν11 · · · ∂νnn , |ν| = ν1 + . . .+ νn, and FkHl = F−kHl. Since the lowest degree of
the Hodge filtration of OX(∗D) is 0, and DR((ix)+Hl) ∼= (ix)∗Hl, that is, the push-forward
of the pure Hodge structure Hl is a skyscraper sheaf, then the highest degree of the Hodge
filtration of Hl is n, in other words, Fn+1Hl = 0. Using this, we obtain, for instance, that

F0(ix)+Hl = (ix)∗F
nHl ⊗ 1 = (ix)∗GrnF Hl ⊗ 1,

and

F1(ix)+Hl = (ix)∗F
n−1Hl ⊗ 1⊕

⊕
i

(ix)∗F
nHl ⊗ ∂i.

Since Fp(ix)+Hl is a skyscraper sheaf, we denote by dim(Fp(ix)+Hl) the dimension of the
complex vector space Jp that satisfies Fp(ix)+Hl = (ix)∗Jp. From the discussion above, we
obtain that

dim(F0(ix)+Hl) = dim(GrnF Hl),

dim(F1(ix)+Hl) = dim(Fn−1Hl) + n dim(GrnF Hl) = dim(Grn−1
F Hl) + (n+ 1) dim(GrnF Hl),

and in general

dim(Fp(ix)+Hl) =

p∑
k=0

(
n− 1 + k

k

)
dim(Fn−p+kHl) =

p∑
r=0

dim(Grn−r
F Hl)

p−r∑
k=0

(
n− 1 + k

k

)

=

p∑
r=0

(
n+ p− r

p− r

)
dim(Grn−r

F Hl).

(6.5)

The dimension of Grn−k
F Hl is described in Theorem B.

Proof of Theorem B. We can and will assume that X is a projective variety. Indeed, there
is an open set around x which has a smooth projective compactification X̄. Let D̄ be the
closure of D in X̄. Consider a log-resolution of (X̄ ∖ x, D̄∖ x) given by a sequence of blow
ups with centers over the singular locus of D̄ ∖ x. By blowing up the same sequence of
centers over X̄, we obtain a map X1 → X̄. Let D1 be the strict transform of D̄. By con-
struction, the map is an isomorphism over (X,D), and D1 has only one isolated singularity
corresponding to x ∈ D. We replace (X,D) with (X1, D1).

First, we prove that these dimensions do not depend on the log-resolution of singularities
that is an isomorphism outside of {x}. Since for a pair of resolution of singularities one can
find a third one that dominates the two of them, it is enough to show that the dimensions
are equal if we have two resolutions of singularities g1 : D1 → D and g2 : D2 → D such that
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there is a morphism h : D1 → D2 such that g1 = g2 ◦ h. Let Gi ⊆ Di be the exceptional
divisor of gi. Consider the exact sequence of mixed Hodge structures

· · · → Hk−1(G1) → Hk(D2) → Hk(D1)⊕Hk(G2) → Hk(G1) → · · ·
(see [PS08, Proof of Theorem 6.15]). For l ≥ 3, applying Hp,n−l−p, we obtain that

Hp,n−l−p(Hn−2(G2)) ∼= Hp,n−l−p(Hn−2(G1)).

For l = 2, applyingHp,n−p−2 andHn−p−1,p+1, and noting that hp,n−p−2(Di) = hn−p−1,p+1(Di),
we obtain that

hp,n−p−2(Hn−2(G1))− hn−p−1,p+1(Hn(G1)) = hp,n−p−2(Hn−2(G2))− hn−p−1,p+1(Hn(G2)).

Let f : Y → X be a log-resolution that is an isomorphism outside of x, and E :=

f−1(D)red. This resolution defines a log-resolution of singularities g : D̃ → D by restriction,
that is an isomorphism outside of x. We use the spectral sequence (1.3) for the constant
map from X to a point. In this case, it says

(6.6) E−n−l,q
1 = Hq−n−l(X,DR(grWn+l OX(∗D))) ⇒ Hq−l(U,C),

noting that DR(OX(∗D)) ∼= Rj∗CU [n], where j : U = X ∖ D ↪→ X. We also have the
isomorphism

E−n−l,q
2

∼= GrWq Hq−l(U).

Consider the maps

E−n−l−1,n+l
1 → E−n−l,n+l

1 → E−n−l+1,n+l
1 ,

corresponding to

H−1(X,DR(grWn+l+1 OX(∗D))) → H0(X,DR(grWn+l OX(∗D))) → H1(X,DR(grWn+l−1 OX(∗D))).

Moreover, the degeneration of the Hodge-to-de-Rham spectral sequence says that

(6.7) grF−n+pHi(X,DR(grWn+l OX(∗D))) ∼= Hi(X, grF−n+pDR(grWn+l OX(∗D)))

(see for example [MP19a, Example 4.2]).

Consider first the case l ≥ 3. Noting that Hi(X,DR((ix)+Hl)) = 0 if i ̸= 0 for l ≥ 2, we
obtain that

E−n−l,n+l
2

∼= Hl.

Applying grF−n+p, using (6.7), and the E2-degeneration of the spectral sequence, we obtain
that

grF−n+pE
−n−l,n+l
2

∼= grF−n+pHl = Grn−p
F Hl

∼= Hn−p,l+p(Hn(U)) ∼= Hp,n−l−p(Hn
c (U))∗,

where the last isomoprhism follows from Poincaré duality (see [PS08, Theorem 6.23]). Using
the long exact sequence of the pair (X,D), we obtain that

Hp,n−l−p(Hn
c (U)) ∼= Hp,n−l−p(Hn−1(D)),

as Hn−1(X) and Hn(X) have pure Hodge structures. Finally, as g has {x} as discriminant,
we have a long exact sequence,

Hn−2(D̃) → Hn−2(G) → Hn−1(D) → Hn−1(D̃).
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As this is a sequence of mixed Hodge structures, we obtain

Hp,n−l−p(Hn−1(D)) ∼= Hp,n−l−p(Hn−2(G)).

Consider now l = 2. In this case, the maps

E−n−3,n+2
1 → E−n−2,n+2

1 → E−n−1,n+2
1 → E−n,n+2

1

correspond to

0 → H2
β̃→ Hn(D)(−1)

γ̃→ Hn+2(X).

Indeed, the first two terms follow from the explanation above. The third term follows from
the fact that DR(grWn+1 OX(∗D)) ∼= ICD(−1), a Tate twist of the intersection complex of D
[Sai09, §2.2]. Furthermore, IHn(D) ∼= Hn(D) [GM80, §6.1]. The last term in the complex,
follow as DR(grWn OX(∗D)) ∼= CX [n]. From the short exact sequence

kerβ → Grn−p
F H2 → imβ,

where β = grF−n+p β̃ and γ = grF−n+p γ̃, we obtain that

dim(Grn−p
F H2) = dimkerβ + dim imβ

= hp,n−p−2(Hn
c (U)) + hn−p−1,p+1(Hn(D))

− hp,n−p−2(X) + hp,n−p−2(Hn−2
c (U))− hp,n−p−2(Hn−1

c (U)).

Indeed, this follows from the descriptions of En−2+s,n+2
2 for s = 0, 1, 2 and Poincaré duality.

More precisely, we have three short exact sequences

0 → Hp,n−p−2(Hn
c (U))∗ → Grn−p

F H2 → imβ → 0,

0 → ker γ → Grn−p
F Hn+1(D) → im γ → 0,

0 → im γ → Hp,n−p−2(X)∗ → Hp,n−p−2(Hn−2
c (U))∗ → 0,

and also that Grn−p
F En−1,n+2

2
∼= Hp,n−p−2(Hn−1

c (U))∗. Using the long exact sequence
associated to the pair (X,D) to relate these three sequences, we obtain

dim(Grn−p
F H2) = hn−p−1,p+1(Hn(D))− hp,n−p−2(Hn−2(D)) + hp,n−p−2(Hn−1(D)).

Finally, using that the map g has {x} as discriminant, we obtain that

dim(Grn−p
F H2) = hp,n−p−2(Hn−2(G))− hn−p−1,p+1(Hn(G)).

□

Remark 6.8. In general, the term hn−p−1,p+1(Hn(G)) might not be 0. Consider for in-
stance n = 4 and p = 1. In this case, h2,2(H4(G)) = k where k is the number of irreducible
components of G. Using similar computations as above, we also see that

hp,n−p−2(Hn−2(G))− hn−p−1,p+1(Hn(G)) = hn−p−1,p+1(Hn(D))− hp,n−p−2(Hn−2(D)),

that is, the failure of Poincaré duality. Still, in the case p = 0, the term hn−p−1,p+1(Hn(G))
is always 0, as G is (n− 2)-dimensional (see [Ola22, Theorem B]).
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E. Vanishing Theorems

7. Ample divisors. Let X be a smooth projective variety of dimension n, and D an
ample divisor. Let U = X ∖D. As U is smooth and affine, H i+n(U) = 0 for i > 0 (see for
instance [Laz04, Theorem 3.1.1]). In this setting we have the following result.

Lemma 7.1. There is a short exact sequence

0 →H i(X,DR(Wn+lOX(∗D)) → H i(X,DR(grWn+l OX(∗D))) →
→H i+1(X,DR(Wn+l−1OX(∗D))) → 0.

Proof. In [Ola22, Proof of Proposition 12.1], using the spectral sequences

E−n−l,q
1 = Hq−n−l(X,DR(grWn+l OX(∗D))) ⇒ Hq−l(U,C)

and

E
′−n−l,q
1 = Hq−n−l(X,DR(grWn+lWn+kOX(∗D))) ⇒ Hq−n−l(X,DR(Wn+kOX(∗D)))

and noting that

E−n−l,q
2

∼= GrWq Hq−l(U,C)

E
′−n−l,q
2

∼= grWq Hq−n−l(X,DR(Wn+kOX(∗D)))

we obtained:

(a) For s ≥ 1,

grWn+k+i−sH
i(X,DR(Wn+kOX(∗D))) ∼= GrWn+k+i−sH

i+n(U,C).

(b) For s ≥ 1,

grWn+k+i+sH
i(X,DR(Wn+kOX(∗D))) = 0.

(c) Let

αk+1 : H
i−1(X,DR(grWn+k+1 OX(∗D))) → H i(X,DR(grWn+k OX(∗D)))

corresponding to the map E−n−k−1,i+n+k
1 → E−n−k,i+n+k

1 . Then we have the fol-
lowing short exact sequence:

0 → imαk+1 → grWi+n+kH
i(X,DR(Wn+kOX(∗D))) → GrWi+n+kH

i+n(U,C) → 0.

If i ≥ 1, then

imαk+1
∼= grWi+n+kH

i(X,DR(Wn+kOX(∗D))) ∼= H i(X,DR(Wn+kOX(∗D))).

Consider now the complex

E−n−l−1,n+l+i
1

αl+1→ E−n−l,n+l+i
1

αl→ E−n−l+1,n+l+i
1 .

As E−n−l,n+l+i
2 = 0, using the analysis above, we obtain a short exact sequence

0 → imαl+1 → H i(X,DR(grWn+l OX(∗D))) → imαl → 0,

and the result follows. □
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When p = 0, the result above is enough to obtain that

H i(X,ωX(D)⊗ IWl
0 (D)) = 0

for l ≥ 2 and i ≥ 1. Indeed, as 0 is the lowest degree of the Hodge filtration on OX(∗D),
we have

H i(X,ωX(D)⊗ IWl
0 (D)) ∼= grF−nH

i(X,DR(Wn+lOX(∗D))).

This is no longer the case when we consider grF−n+p for p ≥ 1 instead. Nonetheless, following
the idea in [MP19a, Proof of Theorem F], we give conditions in Theorem C to obtain an
analogue vanishing theorem.

Proof of Theorem C. Since IWl
p−1(D) = OX , we have the following short exact sequence

0 → ωX(pD) → ωX((p+ 1)D)⊗ IWl
p (D) → ωX ⊗ grFp (Wn+lOX(∗D)) → 0.

Using the long exact sequence of cohomologies and Kodaira-vanishing, we note that it is
enough to prove that

H i(X,ωX ⊗ grFp (Wn+lOX(∗D))) = 0.

Consider now the complex

C• := grF−n+pDR(Wn+lOX(∗D)).

The complex C• can be identified with the complex[
Ωn−p
X ⊗ OX(D) → Ωn−p+1

X ⊗ OD(2D) → · · · → Ωn−1
X ⊗ OD(pD) → ωX ⊗ grFp (Wn+lOX(∗D))

]
concentrated in degrees −p to 0, since F0Wn+lOX(∗D) = OX(D) and grFk Wn+lOX(∗D) ∼=
OD((k + 1)D) for k ≤ p− 1 (see §1 for the definition of grFp DR).

Suppose now that D has at most isolated singularities. By Lemma 7.1, we obtain that

Hi(X,DR(Wn+lOX(∗D))) = 0

for i ≥ 1 and l ≥ 2. In particular, this means that

Hi(X,C•) = 0

for the same indices, by the Hodge-to-de-Rham degeneration. Next, we use the exact
sequence

Ep,q
1 = Hq(X,Cp) ⇒ Hp+q(X,C•).

Note that

E0,q
1 = Hq(X,ωX ⊗ grFp (Wn+lOX(∗D))).

Since

E−1,q
1 = Hq(X,Ωn−1

X ⊗ OD(pD)),

then E−1,q
1 = 0 if q ≥ 2 by Nakano vanishing. Moreover, E−1,1

1 = 0 by our hypothesis.
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We continue with a similar analysis in the higher pages of the spectral sequence. More
precisely, we show that the hypothesis implies that E−r,q+r−1

r = 0 for all r ≥ 2. Note that
this is enough to complete the proof. Indeed, if this is the case, we obtain that

E0,q
∞ = Hq(X,ωX ⊗ grFp (Wn+lOX(∗D))) = 0

for q ≥ 1, where the last equality follows from the established equality with C•.

To complete the proof, note that

E−r,q+r−1
1 = 0

for r ≥ p. Indeed, this is clear for the strict inequality by the degrees on which C• is
concentrated, and

E−p,q+p−1
1 = Hq+p−1(X,Ωn−p

X ⊗ OX(D)).

If q ≥ 2, then this spaces vanishes by Nakano vanishing, and if q = 1, it vanishes by our
assumption. Finally, for r ≤ p− 1, we have

E−r,q+r−1
1 = Hq+r−1(X,Ωn−r

X ⊗ OD((p+ 1− r)D)).

This space fits the a long exact sequence

→ Hq+r−1(X,Ωn−r
X ((p+ 1− r)D)) → E−r,q+r−1

1 → Hq+r(X,Ωn−r
X ((p− r)D)).

If q ≥ 2, then the two other terms vanish by Nakano vanishing, and if q = 1, they vanish
by the assumption. □

Remark 7.2. This result does not hold in general for l = 1 (see [Ola22, Remark 9]).

8. Kodaira-type vanishing. Using a similar idea to the one in the proof of Theorem C,
we obtain a vanishing theorem for weighted Hodge ideals. This is the analogue result to
[MP19a, Theorem F].

Proposition 8.1. Let X be a smooth projective variety of dimension n, and D a reduced
effective divisor. Let L be a line bundle such that L(kD) is ample for 0 ≤ k ≤ p, and

assume IW1
p−1(D) is trivial. Then

(1) For l ≥ 1 and i ≥ 2,

H i(X,ωX((p+ 1)D)⊗ L⊗ IWl
p (D)) = 0.

(2) If Hj(X,Ωn−j
X ⊗ L((p− j + 1)D)) = 0 for all 1 ≤ j ≤ p, then

H1(X,ωX((p+ 1)D)⊗ L⊗ IWl
p (D)) = 0

for l ≥ 1.

Proof. Since IWl
p−1(D) = OX , we have the following short exact sequence

0 → ωX ⊗ L(pD) → ωX ⊗ L((p+ 1)D)⊗ IWl
p (D) → ωX ⊗ L⊗ grFp (Wn+lOX(∗D)) → 0.

By Kodaira-vanishing, it is enough to prove

H i(X,ωX ⊗ L⊗ grFp (Wn+lOX(∗D))) = 0.
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We have that

Hi(X,L⊗ grF−n+pDR(Wn+lOX(∗D)) = 0

for i ≥ 1 and l ≥ 1 as a consequence of a vanishing result by Saito [Sai90, Proposition 2.33].
To complete the proof, we use the same spectral sequence as in the proof of Theorem C. □

9. Applications. In this section, we combine the local study and the vanishing results.
To obtain applications, we use the vanishing theorems of the previous sections. A class
varieties where the vanishing condition in Theorem C and Proposition 8.1 is satisfied, is
toric varieties. In this case, the Bott-Danilov-Steenbrink vanishing theorem says that if A
is an ample line bundle on the toric variety X, then

H i(X,Ωj ⊗A) = 0

for j ≥ 0 and i ≥ 1 (see e.g. [Mus02, Theorem 2.4]). For the applications, we discuss the
case of X = Pn. We start with the proof of Corollary D.

Proof of Corollary D. Consider the exact sequence

0 → OPn(k)⊗ IWl
p (D) → OPn(k) → OZp,l

(k) → 0.

The result follows from passing to cohomology and applying Theorem C. □

9.1. Isolated p-log-canonical singularities. Suppose the pair (X,D) is p-log-canonical, and

has at most isolated singularities. If p = 0, the pair is log-canonical and in this case, IW1
0 (D)

is the maximal ideal at each isolated singularity that is not rational, by a result of Ishii
(see [Ola22, §5.3]). For simplicity, let x ∈ D be the only singularity and i : {x} ↪→ X
the inclusion, and suppose that it is log-canonical singularity and not rational. The result
above means that if we denote

i∗Hl = DR(grWn+l OX(∗D))

for l ≥ 2, there exists exactly one degree l such that dim(grF−nHl) = 1, and the rest are
0. In this case, using [Ola22, Theorem B], we say that the singularity is of type (0, n − l)
[Ish85, Definition 4.1]. There is a similar picture for the cases p ≥ 1 we describe next.

Non-rational log-canonical singularities correspond to the case where the minimal expo-
nent at the singularity is 1. We then consider singularities with minimal exponent p + 1,
in which case Ip(D) = OX and IW1

p (D) is non-trivial by Corollary 5.10. These singularities
generalize the example of non-rational log-canonical singularities in the following sense.

Proposition 9.1. Suppose D has at most one isolated singularity x ∈ D, and α̃D = p+ 1.
Then,

IW1
p (D) = mx,

the maximal ideal of x in X.

Proof. Suppose that D is defined by f ∈ OX . Recall from the proof of Corollary 5.10, that
as α̃f = p+1, then δ, ∂tδ, . . . , ∂

p
t δ ∈ V 1Bf . Moreover, we also know that δ, ∂tδ, . . . , ∂

p−1
t δ ∈
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W1V
1Bf . It is then enough to show that g∂pt δ ∈W1V

1Bf if and only if g ∈ mx. As D has
an isolated singularity, we have that

grFp grαV Bf is annihilated by mx

for α < 1 [DS12, 4.11.1].

We also know that ∂pt δ ∈ V 1Bf ∖W1V
1Bf , and this means that ∂p+1

t δ ∈ V 0Bf ∖V >0Bf .

In particular, the class of ∂p+1
t δ in GrFp gr0V Bf is not zero. Using the result above, for any

g ∈ mx, the class of g∂p+1
t δ in GrFp gr0V Bf is zero. This means that g∂p+1

t δ ∈ V >0Bf ,

and equivalently, g∂pt δ ∈ W1V
1Bf . Using the description of Theorem A, we obtain that

g ∈ IW1
p (D) for any g ∈ mx, and we know that the ideal is not trivial, hence we have an

equality. □

In other words, if D has one isolated singularity x ∈ D, and α̃D = p+ 1, then∑
l≥2

dim(Grn−p
F Hl) = 1

by Theorem B, that is, there is exactly one l ≥ 2 such that

dim(Grn−p
F Hl) = 1,

and the rest are 0. Moreover, by the same result,
∑

l≥2 dim(Grn−r
F Hl) = 1, for 0 ≤ r ≤ p−1.

Remark 9.2. Friedman and Laza have studied related invariants of singularities in similar
conditions in [FL22, Theorem 6.11 and Corollary 6.14].

Definition 9.3. Let x ∈ D be an isolated singularity such that α̃Dx = p + 1, that is an
isolated p-log-canonical that is not p-rational. Let l be the degree such that dim(Grn−p

F Hl) =
1. Then, we say that the singularity is of type (p, n− l − p).

Remark 9.4. i) Definition 9.3 is analogous to the definition of isolated log-canonical
singularities of type (0, s) [Ish85, Definition 4.1], when x ∈ D is an isolated singu-
larity and D is a hypersurface of a smooth variety.

ii) Ishii defined these singularities more generally for normal isolated 1-Gorenstein log-
canonical singularities. It is an open question how to generalize this definition for
non-hypersurface singularities.

iii) The possible types are (p, p), (p, p+1), . . . (p, n−2−p). This is a consequence of the
fact that the nilpotency order of the vanishing cohomology is bounded by Briançon-
Skoda exponent [Sch80, Main Theorem]. This nilpotency order gives a bound for
the nilpotency order of (∂tt) on gr0V Bf , which in turn gives a bound for the order
of (t∂t) on gr1V Bf . The Briançon-Skoda exponent is bounded by n− 2p− 1 (see for
instance [JKSY22a]), which means that n− l − p ≥ p.

Example 9.5. Suppose that f ∈ C[x1, . . . , xn] is a polynomial with an isolated singularity
at the origin, and a non-degenerate Newton boundary. Let Γ+(f) = Γ the Newton polyhe-
dron of f , Γ(f) the union of the compact faces of Γ+(f), and F the set of compact facets.
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For each F ∈ F , there is a unique vector BF ∈ (Q≥0)
n such that ⟨A,BF ⟩ = 1 for all A ∈ F .

For every monomial xν , we define

ρ̃F (x
ν) = ⟨ν + 1, BF ⟩,

where 1 = (1, . . . , 1), and for any g ∈ O, g =
∑
gAx

A,

ρ̃F (g) = min{ρ̃F (xA) : gA ̸= 0}.

Finally, we define

ρ̃(g) = min{ρ̃F (g) : F ∈ F}.
In this case, the minimal exponent is ρ̃(1).

Suppose α̃f = p + 1, which implies that ∂pt δ ∈ V 1i+OX . Using the description of the
microlocal V -filtration (see [Sai94, Proposition 3.2]), we see that if

r = #{F ∈ F : ρ̃F (1) = ρ̃(1)},

then (t∂t)
r+1∂pt δ ∈ V >1i+OX , or equivalently,

1 ∈ IWr+1
p (D).

In general, r + 1 is not the degree with Grn−p
F Hl ̸= 0.

i) Weighted homogeneous singularities with α̃f = p+1 are examples of singularities of type
(p, n−2−p) (see Remark 5.7). Isolated singularities with non-degenerate Newton boundary
give examples for different degrees of l. For instance, f = x2+y2+z2+u2w2+u4+w5 ∈ C5

satisfies that α̃f = 2, and r = 2, using the notation above. We can also verify that
(t∂t)

2∂tδ /∈ V >1i+OX , since w5∂3t δ ∈ V 0 \ V >0. Indeed, this follows from the fact that
w5 /∈ J(f), where J(f) is the Jacobian ideal, and [JKSY22b, Proposition 1.3]. Therefore,
this singularity is of type (1, 1).

ii) Let ∆0 be the compact face that contains 1
p+11 in its relative interior, and let s = dim∆0.

Assume also that the Newton polyhedron is simplicial. The number r defined above satisfies
that s = n− r. Let l be the degree such that Grn−p

F Hl ̸= 0. Then l ≤ r + 1 = n− s+ 1, if
s > 0, and l ≤ n is s = 0.

iii) If p = 0, the previous inequalities are equalities (without the simplicial assumption) by
a result of Watanabe that says that the singularities are log-canonical of type (0, s − 1) if
s > 0, and (0, 0) if s = 0, which is equivalent to the equalities [Wat87, Corollary 3.14].

Using Proposition 9.1 and the vanishing results, we obtain a bound on the number of
these singularities in a hypersurface of Pn.

Corollary 9.6. Let D be a reduced hypersurface of Pn of degree d with at most isolated
singularities. Assume that the pair (Pn, D) is strictly p-log-canonical, that is, α̃D = p + 1.
Let Z be the union of the strictly p-log-canonical singular points of D and Z2 the union of
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those of type (p, p), . . . , (p, n− 3− p). Then,

#Z2 ≤
(
(p+ 1)d− 1

n

)
,

and

#Z ≤
(
(p+ 1)d

n

)
.

Proof. By Proposition 9.1, the scheme Z is defined by the ideal IWl
p (D). Therefore, the

result follows from Corollary D.
□

F. Restriction Theorem

Let (M, F ) be a filtered right D-module underlying a mixed Hodge module M on X.
Let H ⊆ X be a smooth hypersurface and i : H ↪→ X the inclusion. In this section, we
change the notation of the V -filtration by Vk = V −k, which is the notation used in [MP18].
There exists a canonical morphism

(9.7) grV0 M σ→ grV−1M⊗OX
OX(H)

satisfying

H0i!M ∼= ker(σ) and H1i!M ∼= coker(σ)

with the filtrations induced by the filtrations on M (see [MP18, §2]). Moreover, on an open
set U ⊆ X where H is given by a local equation t, this map corresponds to

Var = ·t : grV0 M → grV−1M

between the vanishing and nearby cycles along H.

In the proof of [MP18, Theorem A] the authors defined for all k a morphism

(9.8) FkH1i!M → FkM⊗OX
OH(H).

First, we define a morphism

η : Fk gr
V
−1M =

FkV−1M
FkV<−1M

→ FkM⊗OX
OH

such that for u ∈ FkV−1M, η(u) is the class of u in FkM⊗OX
OH . This map is well defined,

as on an open set U where H is defined by an equation t, the V -filtration satisfies

(FkVαM) · t = FkVα−1M for α < 0,

and FkM · t maps to 0 in FkM ⊗OX
OH . The map η induces a map on FkH1i!M. In-

deed, since locally σ is right multiplication by t, the image of σ is mapped to 0 by η⊗OX(H).
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Proof of Theorem E. Let M =Wn+lωX(∗D). For every k we have the canonical morphism
(9.8):

FkH1i!M → FkM⊗OX
OH(H).

Note that the sheaf

Fk−nM⊗OX
OH(H) = IWl

k (D)⊗ ωX((k + 1)D)⊗ OH(H) ∼= IWl
k (D)⊗ ωH((k + 1)DH).

Consider the short exact sequence

0 → M → ωX(∗D) → C → 0.

Applying the functor i! and taking cohomology we obtain an exact sequence

0 → H0i1C → H1i!M → H1i!ωX(∗D) → H1i!C → 0,

as H0i!ωX(∗D) = 0. As grWi C = 0 for i < n+ l + 1,

grWi H0i!C = 0 for i < n+ l + 1,

and

grWi H1i!C = 0 for i < n+ l + 2

by [Sai90, Proposition 2.26]. Therefore, we obtain a short exact sequence

0 →Wn+l+1H0i1C →Wn+l+1H1i!M →Wn+l+1H1i!ωX(∗D) → 0.

Note that as

Ext1(Wn+l+1H1i!ωX(∗D),Wn+l+1H0i1C) = 0

(see [Sch14, §23]), there is a split map

(9.9) Wn+l+1H1i!ωX(∗D) →Wn+l+1H1i!M.

The source of this maps admits the following interpretation:

Wn+l+1H1i!ωX(∗D) ∼=Wn−1+lωH(∗DH).

Indeed,

H1i!ωX(∗D) ∼= ωH(∗DH)(−1)

[MP18, Proof of Theorem A].

Taking the corresponding piece of the Hodge filtration in (9.9) and composing it with
(9.8), we obtain a morphism

FkWn+l+1H1i!ωX(∗D) → FkM⊗OX
OH(H).

Using the morphism above and switching k to k − n, we obtain a map

Fk−n+1Wn−1+lωH(∗DH) = IWl
k (DH)⊗ ωH((k + 1)DH) → IWl

k (D)⊗ ωH((k + 1)DH),

and hence

IWl
k (DH) → IWl

k (D)⊗ OH .
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Composing this map with IWl
k (D)⊗ OH → IWl

k (D) · OH , we obtain a morphism

(9.10) IWl
k (DH) → IWl

k (D) · OH .

By construction, this map is compatible with restriction to open sets. Let V = H \DH be
the complement. When restricted to V , this map is the identity on OV , and therefore it is
an inclusion.

For the last statement, we note that a general H is in particular non-characteristic with
respect to ωX(∗D). By the description of the V -filtration in this case [Sai88, Lemma 3.5.6],
the map σ is the zero map, and therefore (9.8) is a surjection. Moreover, in this case

H1i!M = H1i!Wn+lωX(∗D) ∼=Wn+l+1H1i!ωX(∗D)

where the first equality is the definition of M and the isomorphism is a result of Saito
[Sai90, Lemma 2.25]. Hence, in this case (9.10) is an isomorphism. □

Remark 9.11. A similar result can be obtained when H is an intersection of several general
hyperplane sections. For more details, see [Ola22, Remark 12].
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