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Abstract. We study the singularities of secant varieties of smooth projective varieties
using methods from birational geometry when the embedding line bundle is sufficiently
positive. We give a necessary and sufficient condition for these to have p-Du Bois singular-
ities. In addition, we show that the singularities of these varieties are never higher rational,
by giving a classification of the cases when they are pre-1-rational. From these results, we
deduce several consequences, including a Kodaira-Akizuki-Nakano type vanishing result
for the reflexive differential forms of the secant varieties.

A. Introduction

Secant varieties have been vastly studied in the literature. In particular, there has been a
great deal of interest in understanding their defining equations and syzygies as well as their
singularities ([ENP20,Rai12, SV09, SV11,Ver01, Ver08, Ver09] and the references therein).
The research on these varieties is also partly motivated by topics in algebraic statistics and
algebraic complexity theory ([SS06, LW09]). A few years ago, under some positivity con-
ditions on the embedding line bundle, [Ull16] had shown the normality of these varieties,
thereby completing some results of Vermeire. More recently, the singularities of the secant
varieties were shown to be Du Bois, which is an important class of singularities (see [KS11]
for a survey), in [CS18], and also a characterization for when these are rational was given.

Very recently, the notions of Du Bois and rational singularities have been extended sub-
stantially in a series of papers [MOPW23, JKSY22, FL22a, SVV23]. For this reason, it is
natural to ask: to which of these newly defined singularity classes do the secant varieties
belong? To set up the context, we start with a smooth projective variety X of dimension
n and a very ample line bundle L on X. We denote by Σ = Σ(X,L) the secant variety of
X with respect to L. Under a mild assumption on the positivity of L, which requires L to
be 3-very ample (see Definition 2.1), dimΣ = 2n+ 1 and the singular locus of Σ is X ⊂ Σ
(see Proposition 2.2).

In [Ull16] and [CS18], the singularities of the secant varieties were studied when X is
embedded by a sufficiently positive adjoint linear series. As a natural extension, throughout
this article, we will mostly be concerned with the situation described in Set-up 2.28, where
we assume that one of the following holds:

• n = 1 and deg(L) ≥ 2g + 3 where g is the genus of X; or

2020 Mathematics Subject Classification. 14J17, 14N07.
Key words and phrases. Secant varieties, higher Du Bois, and higher rational singularities.

1



2 S. OLANO, D. RAYCHAUDHURY, AND L. SONG

• n ≥ 2 and L = Ll,d := lKX + dA + B where A and B are very ample and nef line
bundles respectively, with a certain positivity assumption described in (2.29).

The positivity assumption we indicated is purely numerical in terms of (l, d) depending on
a parameter s. Under these assumptions, L is 3-very ample (see Remark 2.30). Roughly
speaking, when n ≥ 2, the larger s for which (l, d) satisfies the condition (2.29) implies the
better singularities of Σ. For example, the tuple (1, d) with d ≥ 2n+ 2 satisfies (2.29) with
s = 0; and the main results of Ullery and Chou–Song can be stated as follows:

Theorem 0.1 ([Ull16,CS18], Remark 2.31). Assume one of the following holds:

• n = 1 and deg(L) ≥ 2g + 3 where g is the genus of X; or
• n ≥ 2 and L = L1,d := KX + dA + B where A and B are very ample and nef line
bundles respectively, with d ≥ 2n+ 2.

Then Σ is normal and has Du Bois singularities. In particular, the same conclusions hold
in the situation of Set-up 2.28 if (l, d) satisfies (2.29) with s = 0 when n ≥ 2.

The present work is devoted to understanding the singularities of Σ, where we additionally
assume that (l, d) satisfies (2.29) with s = p when n ≥ 2 for some 1 ≤ p ≤ n. For the
convenience of the reader, here we remark that for n ≥ 2, the line bundle

L = 2KX + dA+B

satisfies (2.29) with s = 1, when d ≥ 3n + 4 (if n ≥ 3, then d = 3n + 3 also satisfies the
condition). Moreover, for n ≥ 2 and 1 ≤ p ≤ n, the line bundle

L =


[(

n−1
p−1

)
+ 1

]
KX +

[((
n−1
p−1

)
+ 1

)
(n+ 2) + 2p

((
n

⌊n
2 ⌋
)
+ 1

)]
A+B if p− 1 ≤ ⌊

(
n−1
2

)
⌋;[( n−1

⌊n−1
2 ⌋

)
+ 1

]
KX +

[(( n−1
⌊n−1

2 ⌋
)
+ 1

)
(n+ 2) + 2p

((
n

⌊n
2 ⌋
)
+ 1

)]
A+B otherwise

satisfies the positivity assumptions described in (2.29) with s = p.

Higher Du Bois singularities. We now recall that associated to any complex variety Z
there is the Du Bois complex Ω•

Z , introduced in [DB81], which is an object in the derived
category of filtered complexes on Z. The associated graded objects

Ωk
Z := GrkF Ω•

Z [k]

are objects in the derived category of coherent sheaves. A variety Z is said to have Du Bois
singularities if the canonical morphism OZ → Ω0

Z is a quasi-isomorphism. This notion has

been generalized by requiring the canonical morphisms Ωk
Z → Ωk

Z to be quasi-isomorphisms
for 0 ≤ k ≤ p as well. This condition is well-behaved for varieties whose singularities are
local complete intersections (see [MP22a,MP22b]) but usually fails otherwise, as is the case
of secant varieties as they are in general not even Cohen-Macaulay ([CS18, Theorem 1.3]).

For this reason, a new definition of varieties having p-Du Bois singularities was intro-
duced in [SVV23], which generalizes the previously described notion for varieties with local
complete intersection singularities. Our first result is about a vanishing condition on the
cohomology of the Du Bois complexes. Following [SVV23], we say that a variety has pre-p-
Du Bois singularities if these complexes are concentrated in degree zero for 0 ≤ k ≤ p (see
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Definition 1.1). When n ≥ 2 and (l, d) satisfies (2.29) for sufficiently large s, Σ satisfies this
for every non-negative integers p. Also, Σ has pre-p-Du Bois singularities for all p ≥ 0 when
X is a curve embedded by the complete linear series of a line bundle of degree ≥ 2g + 3:

Theorem A. Let p ∈ N. In the situation of Set-up 2.28, assume (l, d) satisfies (2.29) with
s = min {p, n} when n ≥ 2. Then the natural maps

H0(Ωk
Σ)→ Ωk

Σ

are quasi-isomorphisms for all 0 ≤ k ≤ p; in particular, the singularities of Σ are pre-p-Du
Bois.

In fact, we prove a more general statement that does not require the Set-up 2.28 condi-
tions. Briefly stated, it is enough to verify for i, j ≥ 1

(0.2) H i(Ωq
Fx
⊗ b∗x(jL)(−2jEx)) = 0 for all 0 ≤ q ≤ p and for all x ∈ X

where bx : Fx := BlxX → X is blow-up at x and Ex is the exceptional divisor, to obtain
the same conclusion as in Theorem A (see Proposition 3.3). Other results presented below
are also valid if (0.2) is satisfied with some extra mild conditions.

We show in Theorem 3.1 that in the situation of Set-up 2.28, if (l, d) satisfies (2.29)
with s = min {p, n} when n ≥ 2, then (0.2) is satisfied. Other examples where (0.2) is
satisfied, include when b∗xL(−2Ex) is ample and Fx satisfies Bott vanishing for all x ∈ X.
In the case of curves embedded by line bundles of smaller degrees, we refer to Example 4.14.

In addition to requiring Z to have pre-p-Du Bois singularities, following [SVV23], a variety
is said to have p-Du Bois singularities if two extra conditions are satisfied. The first is a
codimension condition on the singular locus, and the second is a condition in degree zero
for Ωk

Z when 0 ≤ k ≤ p (see Definition 1.2). Secant varieties satisfy the first condition up
to a certain range; and in relation to the last condition, we show:

Theorem B. Let p be a positive integer. Suppose we are in the situation of Set-up 2.28
and assume (l, d) satisfies (2.29) with s = min {p, n} when n ≥ 2. Then the natural maps

δk : H0(Ωk
Σ)→ Ω

[k]
Σ

are isomorphisms for 1 ≤ k ≤ p if and only if Hk(OX) = 0 for 1 ≤ k ≤ p.

As before, we remark here that if Σ is normal, then its singularities are Du Bois and the
conclusion of Theorem B holds if (0.2) is satisfied.

We now introduce an useful invariant

ν(X) := max
{
i | 1 ≤ i ≤ n− 1 such that Hj(OX) = 0 for all 1 ≤ j ≤ i

}
,

where we set the convention ν(X) = 0 if the set above is empty. The importance of this
invariant was observed in [CS18]; it follows from loc. cit. that if n ≥ 2 and (l, d) satisfies
(2.29) for some s ≥ 0, or if X is a curve embedded by |L| with deg(L) ≥ 2g + 3, then Σ is
Cohen-Macaulay if and only if ν(X) = n − 1 (notice that this always holds when n = 1),
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and it has rational singularities if and only if ν(X) = n−1 and Hn(OX) = 0. The following
is an immediate consequence of Theorem A and Theorem B.

Corollary C. Let p ∈ N with p ≤ ⌊n2 ⌋. Suppose we are in the situation of Set-up 2.28 and
assume (l, d) satisfies (2.29) with s = p when n ≥ 2. Then Σ has p-Du Bois singularities if
and only if p ≤ ν(X).

When L is 3-very ample, the codimension of the singular locus of Σ is n + 1 whence it
follows from the definition of p-Du Bois singularity and Proposition 2.2, that in this case Σ
has p-Du Bois singularity for some p > ⌊n2 ⌋ if and only if Σ = P(H0(L)).

We further study the morphisms δk : H0(Ωk
Σ)→ Ω

[k]
Σ and in Theorem 5.1, we also discuss

the case for higher degrees not considered in the definition of p-Du Bois singularities. Recall
that a variety Z is said to have weakly rational singularities if the Grauert-Riemenschneider
sheaf ωGR

Z , which is by definition the push-forward of the canonical bundle from a resolution
of singularities of Z, is reflexive. In the situation of Set-up 2.28, [CS18, Theorem 1.4]
shows that the natural map ωGR

Σ ↪→ ωΣ := H−2n−1(ω•
Σ) is an isomorphism if and only if

Hn(OX) = 0. Notice that under our set-up, this map is an isomorphism if and only if the
singularities of Σ are weakly rational as Σ is normal and ωΣ is reflexive. When n ≥ 2 and
(l, d) satisfies (2.29) with s = n, loc. cit. combined with Theorem 5.1 (1) establishes the
equivalences:

Σ has weakly rational singularities ⇐⇒ Hn(OX) = 0 ⇐⇒ δ2n+1 is an isomorphism
⇐⇒ δ2n is an isomorphism.

Higher rational singularities. We discuss next the extension of the notion of rational
singularities. Recall that a variety Z is said to have rational singularities if for a resolution

of singularities f : Z̃ → Z, the canonical morphism OZ → Rf∗OZ̃
is a quasi-isomorphism.

Intrinsically, this is equivalent to requiring that the morphism OZ → DZ(Ω
dimZ
Z ) is a quasi-

isomorphism, where DZ(−) is the Grothendieck dual. Analogous to the definition of pre-p-
Du Bois singularities, a variety Z is said to have pre-p-rational singularities if the complexes
DZ(Ω

dimZ−k
Z ) are concentrated in degree zero for any 0 ≤ k ≤ p (see Definition 1.4). When

p < codimZ(Zsing) and f : Z̃ → Z is a strong log resolution with E := f−1(Zsing)red a simple
normal crossing divisor (see Definition 1.5), this condition is equivalent to requiring that
the complexes Rf∗Ω

k
Z̃
(logE) are concentrated in degree zero for 0 ≤ k ≤ p. It was shown in

[SVV23] that for a normal variety, pre-p-rational singularities are pre-p-Du Bois. However,
it turns out that the singularities of secant varieties are almost never pre-1-rational:

Theorem D. Suppose we are in the situation of Set-up 2.28, and assume (l, d) satisfies
(2.29) with s = 1 when n ≥ 2. Then Σ has pre-1-rational singularities if and only if
X ⊂ P(H0(L)) is a rational normal curve of degree ≥ 3.

The above result is a consequence of a more general fact that when n ≥ 2, if (l, d) satisfies

(2.29) with s = 1, then H1(DΣ(Ω
dimΣ−1
Σ )) ̸= 0, and similarly if n = 1, deg(L) ≥ 2g+3 and

g > 0.
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Following [FL22a,SVV23], a variety is said to have p-rational singularities if Z is normal,
has pre-p-rational singularities, and additionally satisfies a codimension condition of the
singular locus (see Definition 1.6). By Proposition 2.2, this last condition is never satisfied
when X ⊂ P(H0(L)) is a rational normal curve of degree ≥ 4.

It is worth mentioning that, unlike the local complete intersection case, where p-Du
Bois singularities are (p−1)-rational ([CDM22,MP22b,FL22b]), our study produces secant
varieties whose singularities are p-Du Bois for some p ≥ 2 but not even pre-1-rational.
This feature is also shared by the singularities of non-simplicial affine toric varieties, see
[SVV23, Proposition E]. We also obtain secant varieties whose singularities are p-Du Bois
for large p but not rational, a feature that is shared by the singularities of certain affine
cones over smooth projective varieties, see [SVV23, Proposition F].

Some examples. We provide concrete examples to highlight the scope of our results:

Example 0.3 (Curves). Let C ⊂ PN be a smooth curve of genus g, embedded by the
complete linear series of a line bundle L with deg(L) ≥ 2g + 3. Then:

• Σ is normal, Cohen-Macaulay, and has Du Bois singularities. It has weakly rational
singularities ⇐⇒ it has rational singularities ⇐⇒ g = 0.
• The singularities of Σ are pre-p-Du Bois for all p ≥ 0. They are pre-1-rational if
and only if g = 0.
• The singularities are not p-Du Bois for any p ≥ 1 unless Σ = PN (one can show that
this happens if and only if C ⊂ PN is a twisted cubic, i.e., (C,L) ∼= (P1,OP1(3))).

Example 0.4 (Higher dimensions). Let X ⊂ PN be a smooth projective variety of dimen-
sion n ≥ 2, embedded by the complete linear series of

L :=

[(
n− 1

⌊n−1
2 ⌋

)
+ 1

]
KX +

[((
n− 1

⌊n−1
2 ⌋

)
+ 1

)
(n+ 2) + 2n

((
n

⌊n2 ⌋

)
+ 1

)]
A+B

where A and B are very ample and nef line bundles respectively. Then Σ is normal, and
has Du Bois singularities. Moreover, the singularities of Σ has the following properties:

• They are pre-p-Du Bois for all p ≥ 0. However, they are never pre-1-rational.
• If X is rationally connected, then the singularities are rational and ⌊n2 ⌋-Du Bois.

• If X is Calabi-Yau in the strong sense (i.e., H i(OX) = 0 for all 1 ≤ i ≤ n− 1) then
they are ⌊n2 ⌋-Du Bois, but not rational. In this case, Σ is Cohen-Macaulay, but not
weakly rational.
• If X is hyper-Kähler (recall that they live in even dimensions), then they are 1-Du
Bois, but not 2-Du Bois. In this case, Σ is Cohen-Macaulay if and only if X is a K3
surface. However, the singularities of Σ are not weakly rational.

One could also obtain many other examples with various features.

Consequences. As the associated graded objects Ωk
Z of the Du Bois complex of a variety

Z are generalizations of the sheaf of k-forms in the smooth case, we can use Theorem A
and Theorem B to prove a Kodaira-Akizuki-Nakano type vanishing theorem:
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Corollary E (Analogue of Kodaira-Akizuki-Nakano vanishing theorem). Let p be a positive
integer. Suppose we are in the situation of Set-up 2.28, and assume (l, d) satisfies (2.29)
with s = min {p, n} when n ≥ 2. let L be an ample line bundle on Σ. If Hk(OX) = 0 for
1 ≤ k ≤ p, then

Hq(Ω
[p]
Σ ⊗ L) = 0 when p+ q > dimΣ = 2n+ 1.

We also apply our results to obtain consequences for h-differentials, an introduction to
which can be found in [HJ14]. It has been proven in [KS21] that if Z is a variety with rational

singularities, then Ωp
h|Z ∼= Ω

[p]
Z for all p. Here we obtain the isomorphisms Ωp

h|Σ ∼= Ω
[p]
Σ up

to a certain range of p, even when the singularities of Σ are not rational:

Corollary F (Description of the h-differentials). Let p be a positive integer. Suppose we
are in the situation of Set-up 2.28, and assume (l, d) satisfies (2.29) with s = min {p, n}
when n ≥ 2. If Hk(OX) = 0 for 1 ≤ k ≤ p, then then there is a natural isomorphism

Ωp
h|Σ ∼= Ω

[p]
Σ .

The previous two results are consequences of more general Corollary 5.16 and Corol-
lary 5.17. Finally, pre-1-rational singularities of rational normal curves of degree ≥ 3 give
consequences for the Hodge-Du Bois numbers of their secant varieties:

Corollary G (Symmetry of Hodge-Du Bois numbers). Let X ⊂ Pc+1 be a rational normal
curve of degree ≥ 3. Then

(0.5) hp,q(Σ) = hq,p(Σ) = h3−p,3−q

for all 0 ≤ p, q ≤ 3, where hp,q(Σ) := dimHq(Σ,Ωp
Σ).

As a concluding note, we remark that there is a third measure of singularities that
is natural to consider, which is the local cohomological dimension lcd(PN ,Σ) of Σ inside
PN := P(H0(L)), and to study the filtrations on the local cohomology sheaves along the
direction of [MP22a]. This will be the topic of a future study.

The structure of this article can be summarized as follows: Sect. B is divided in two
parts, §1 and §2. In §1, we provide a brief review on higher Du Bois and higher rational
singularities. Next, in §2, we recall the basics on secant varieties and describe our set-up.
The proofs of Theorem A and Theorem B are given in Sect. C. The proof of Theorem D
will appear in Sect. D.

Acknowledgements. We are very grateful to Mircea Mustaţă and Mihnea Popa for valu-
able comments on an earlier version of this manuscript and conversations at different stages
of this article. The second author also expresses his gratitude to Angelo Felice Lopez for
comments on the earlier draft.

B. Preliminaries

We work over the field C of complex numbers. By a variety, we mean an integral separated
scheme of finite type over C. For a variety Z, we denote by Zsing its singular locus.
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1. Hodge theory. In this section we recall the basics on higher Du Bois and rational
singularities. In pursuit of a general theory of these singularities beyond the local complete
intersection case, [SVV23] extracted their key features that we will describe.

1.1. Higher Du Bois singularities. The first property of this type of singularities is a van-
ishing condition:

Definition 1.1. A variety Z is said to have pre-p-Du Bois singularities for p ∈ N if

Hi(Ωk
Z) = 0 for all i ≥ 1, 0 ≤ k ≤ p.

Equivalently, the complexes Ωk
Z are concentrated in degree zero for k in the given range.

Recall that by definition, a variety Z has Du Bois singularities if the morphism OZ → Ω0
Z

is a quasi-isomorphism. Also recall that Z is called seminormal if H0(Ω0
Z)
∼= OZ . In

particular, Z has Du Bois singularities if and only if it is seminormal and its singularities
are pre-0-Du Bois. The picture generalizes through the following

Definition 1.2. A variety Z is said to have p-Du Bois singularities for p ∈ N if it is
seminormal, and the following conditions are satisfied:

(1) codimZ(Zsing) ≥ 2p+ 1,
(2) Z has pre-p-Du Bois singularities,
(3) H0(Ωk

Z) is reflexive for all 0 ≤ k ≤ p.

A related condition on a variety Z is the requirement that the morphisms

(1.3) Ωk
Z → Ωk

Z are quasi-isomorphisms for 0 ≤ k ≤ p.

The above condition is equivalent to the conditions stated in Definition 1.2 when Z is a
local complete intersection, but the requirement (1.3) is generally more restrictive. If Z
satisfies (1.3), then its singularities are called strict-p-Du Bois in [SVV23].

1.2. Higher rational singularities. We now proceed towards the definition of higher rational
singularities. Let us first introduce the notation for the (shifted) Grothendieck duality
functor: given a variety Z, we set

DZ(−) := RHomOZ
(−, ω•

Z)[−dimZ].

While defining higher rational singularities, one is concerned with the complexDZ(Ω
dimZ−k
Z ):

Definition 1.4. A variety Z is said to have pre-p-rational singularities for p ∈ N if

Hi(DZ(Ω
dimZ−k
Z )) = 0 for all i ≥ 1, 0 ≤ k ≤ p.

Equivalently, DZ(Ω
dimZ−k
Z ) is concentrated in degree zero for k in the given range.

Recall that Z is said to have rational singularities if the map OZ → DZ(Ω
dimZ
Z ) is a

quasi-isomorphism; this is equivalent to the requirement that Z is normal and Rif∗OZ̃ = 0

for a log resolution f : Z̃ → Z with reduced exceptional divisor E simple normal crossings.
In particular, Z has rational singularities if and only if it is normal and its singularities
are pre-0-rational. In the upcoming sections, we use the following kind of resolutions of
singularities.
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Definition 1.5. Let Z be a variety. By a strong log resolution of Z, we mean a proper
morphism µ : Z̃ → Z that is an isomorphism over Zsm := Z\Zsing with Z̃ smooth, and
µ−1(Zsing)red is a divisor with simple normal crossings.

The picture for rational singularities generalizes through the following:

Definition 1.6. A variety Z is said to have p-rational singularities for p ∈ N if it is normal,
and

(1) codimZ(Zsing) > 2p+ 1,

(2) Rif∗Ω
k
Z̃
(logE) = 0 for all i > 0 and 0 ≤ k ≤ p and for any strong log resolution

f : Z̃ → Z.

The second condition above is equivalent to the requirement that the singularities of Z
are pre-p-rational. When Z is a local complete intersection, the conditions of Definition 1.6
are equivalent to requiring the morphisms

(1.7) Ωk
Z → DZ(Ω

dimZ−k
Z ) are quasi-isomorphisms for 0 ≤ k ≤ p.

However, the above condition is more restrictive, and if Z satisfies this, then its singularities
are called strict-p-rational in [SVV23]. We refer the interested readers to loc. cit. where
various relationships between these singularities are discussed.

2. Preliminaries on secant varieties. In this section, we describe the geometry of secant
varieties and provide several computational tools that will be used throughout the rest of
the article.

2.1. Strong log resolution of secant varieties. LetX be a smooth projective variety of dimen-
sion n. Let L be a very ample line bundle on X inducing the embedding X ↪→ P(H0(L)).

Further, let X [2] be the Hilbert scheme of two points on X, which is a smooth projec-
tive variety. Consider the universal family Φ ⊂ X × X [2] that comes with two natural
projections q : Φ → X and θ : Φ → X [2]. It is known that Φ ∼= Bl∆(X × X) and let
b∆ : Φ ∼= Bl∆(X × X) → X × X be the blow-up morphism where ∆ ⊂ X × X is the
diagonal. We have the following commutative diagram:

Φ X ×X

X [2] X

θ

b∆

q p1

We set EL := θ∗q
∗L and notice that this bundle is globally generated as L is very ample,

i.e., the evaluation map
H0(EL)⊗OX[2] → EL

is surjective. Observe that H0(EL) ∼= H0(L) whence the above surjection induces a map
f : P(EL) → P(H0(L)) which surjects onto the secant variety Σ := Σ(X,L) which, by
definition, is the Zariski closure of the union of 2-secant lines of X ↪→ P(H0(L)). This way,

we obtain the surjective map t : P(EL)→ Σ. In what follows, we set π : P(EL)→ X [2] to be
the structure morphism. Recall the following
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Definition 2.1. A bundle L on a smooth projective variety X is called k–very ample if
for any 0–dimensional subscheme ξ of length k + 1, the evaluation map of global sections
H0(L)→ H0(L⊗Oξ) surjects.

The singular locus of secant varieties is very simple under the mild condition that L is 3-
very ample. Moreover, in this case the map t described above is a resolution of singularities.
Although these facts are well-known to experts, we include the proofs for the convenience
of the readers.

Proposition 2.2. Assume L is 3-very ample. Then the following statements hold:

(1) t|P(EL)\t−1(X) : P(EL)\t−1(X)→ Σ\X is an isomorphism. In particular Σsing ⊆ X.

(2) If in addition Σ ̸= P(H0(L)), then Σsing = X.

We proceed to the proof of the above result. In what follows, we use that given a zero-
dimensional subspace ξ ⊂ X with ideal sheaf Iξ, the linear subspace ⟨ξ⟩ spanned by ξ is
isomorphic to P(H0(L)/H0(L ⊗ Iξ)). Observe that if ξ1 ⊂ X and ξ2 ⊂ X are distinct
zero-dimensional subschemes of length 2, then ⟨ξ1⟩ ≠ ⟨ξ2⟩ when L is 3-very ample.

Lemma 2.3. Assume L is 3-very ample. Let ξ1 ⊂ X and ξ2 ⊂ X be zero-dimensional
subschemes of length 2 with Supp(ξ1) ∩ Supp(ξ2) = ϕ. Then ⟨ξ1⟩ ∩ ⟨ξ2⟩ = ϕ.

Proof. Suppose to the contrary, we have z ∈ (l1 = ⟨ξ1⟩)∩ (l2 = ⟨ξ2⟩). Observe that ⟨ξ⟩ ∼= P2

where ξ := ξ1 ∪ ξ2. On the other hand, H0(L)→ H0(L⊗Oξ) is surjective since L is 3-very
ample, whence ⟨ξ⟩ ∼= P(H0(L)/H0(L⊗ Iξ)) ∼= P3, a contradiction. □

Lemma 2.4. Assume L is 3-very ample, and let x ∈ Σ. If there is a unique zero-
dimensional subscheme ξ ⊂ X of length 2 such that x ∈ ⟨ξ⟩, then there exists an open
set x ∈ V ⊂ Σ such that t|t−1(V ) : t

−1(V ) → V is an isomorphism; in particular x ∈ Σ is
smooth.

Proof. Put l = ⟨ξ⟩ and consider the Cartesian square:

t−1(x) π−1(ξ)

{x} l

∼=

Since t|π−1(ξ) : π
−1([ξ]) → l is an isomorphism by the construction of the resolution t, the

scheme-theoretic preimage t−1(x) is a reduced point. Thus, there exists an open set x ∈
U ⊂ Σ such that for all y ∈ U , we have dim(t−1(y)) = 0. Consequently, t|U : t−1(U)→ U ,
is a finite morphism. Using base change of affine morphism, and upper semi-continuity
of ranks of coherent sheaves, we conclude that there exists an open subset x ∈ V ⊆ U
such that t|V : t−1(V ) → V is an isomorphism. The last assertion follows since t−1(V ) is
smooth. □

Proof of Proposition 2.2 (1). Thanks to Lemma 2.4, it is enough to show that for any x ∈
Σ\X, there exists a unique zero-dimensional subscheme ξ ⊂ X of length 2 such that x ⊂ ⟨ξ⟩.
Suppose to the contrary, x ∈ Σ\X with x ∈ (l1 = ⟨ξ1⟩) ∩ (l2 = ⟨ξ2⟩), where ξi ⊂ X are
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distinct zero-dimensional subschemes of length 2. Since ⟨ξ1⟩ ̸= ⟨ξ2⟩ and since two lines
intersect at most at one point, we conclude that Supp(ξ1) ∩ Supp(ξ2) = ϕ (see the left
schematic diagram in Figure 2.1).

x

l1 = ⟨ξ1⟩ l2 = ⟨ξ2⟩

Tx

Ty

l1

l2

x

y

z

Figure 2.1. Left: x ∈ (l1 = ⟨ξ1⟩) ∩ (l2 = ⟨ξ2⟩). Right: z ∈ Tx ∩ Ty where z /∈ {x, y}

But this contradicts Lemma 2.3. □

We now proceed to prove Proposition 2.2 (2).

Lemma 2.5. Assume L is 3-very ample. Let x, y ∈ X be two distinct points with the
embedded tangent spaces Tx ∩ Ty ̸= ϕ. Then either Tx ∩ Ty = {x} or Tx ∩ Ty = {y}.

Proof. For the sake of contradiction, assume z ∈ Tx ∩ Ty where z /∈ {x, y}. Consider the
lines l1 = xz, l2 = yz (see the right schematic diagram in Figure 2.1). Notice that l1 (resp.
l2) intersects X at x (resp. y) with multiplicity ≥ 2. Consequently, we get zero-dimensional
subschemes ξ1 ⊂ X and ξ2 ⊂ X of length 2, with Supp(ξ1) = {x} and Supp(ξ2) = {y} with
z ∈ ⟨ξ1⟩ ∩ ⟨ξ2⟩. This contradicts Lemma 2.3. □

Lemma 2.6. Assume L is 3-very ample. Let x ∈ X. Then for general y ∈ X, Tx∩Ty = ϕ.

Proof. Since X ⊂ P(H0(L)) is non-degenerate (in particular, X ̸⊆ Tx), for general y ∈ X,
we have Tx ∩ Ty ̸= {y}. For y1, y2 ∈ X distinct points, both distinct from x, assume
Tx ∩Ty1 = Tx ∩Ty2 = {x}. Then, as in the proof of Lemma 2.5, working with xy1 and xy2,
we obtain length 2 subschemes ξ1, ξ2 ⊂ X with Supp(ξ1)∩Supp(ξ2) = ϕ and x ∈ ⟨ξ1⟩∩⟨ξ2⟩,
which contradicts Lemma 2.3. The conclusion follows from Lemma 2.5. □

Proof of Proposition 2.2 (2). In view of (1), we suppose to the contrary that Σsing ⊊ X,
then fix x ∈ X\Σsing. For general y ∈ X, it follows from Lemma 2.6 that dim(span(Tx,Ty)) =
2n+1. Applying Terracini’s lemma (cf. [Laz04a, Lemma 3.4.28]), we deduce that span(Tx,Ty)
= TxΣ. On the other hand, by the generality of y, Σ is smooth at y, so another application
of Terracini’s lemma yields that span(Tx,Ty) = TyΣ. Therefore X ⊆ TxΣ. Recall that
X ⊂ P(H0(L)) is non-degenerate, so TxΣ = P(H0(L)). Since x is a smooth point of Σ, we
obtain Σ = P(H0(L)), a contradiction. □
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From here until the end of §2.2, we tacitly assume that L is 3-very ample. In this case,
Σsing ⊆ X and P(EL) ⊂ X [2] × P(H0(L)) together with the second projection provides
a natural resolution of singularities t : P(EL) → Σ(X,L) by Proposition 2.2. It follows
from [Ver01, Lemma 3.8] that scheme-theoretically we can identify the exceptional divisor
t−1(X) ∼= Φ and the restriction of t on it coincides with the surjection q : Φ→ X.

As an immediate consequence of the above discussion and Proposition 2.2, we obtain

Corollary 2.7. Assume L is 3-very ample and Σ ̸= P(H0(L)). Then, the morphism t is a
strong log resolution of Σ.

Strictly speaking, we don’t use that t is a strong log resolution when Σ ̸= P(H0(L)) in the
proof of Theorem D. This is because, to check whether Σ has pre-1-rational singularities
through its birational description, we only need a resolution which is an isomorphism outside
a locus of codimension at least two. The morphism t satisfies this when L is 3-very ample
as in this case codimΣ(X) = n+ 1 ≥ 2. See Remark 6.1 for more details.

In summary, for any x ∈ X we have the following diagram with Cartesian squares where
the vertical arrows are surjections

(2.8)

Fx Φ P(EL)

{x} X Σ P(H0(L))

q t
f

and Fx
∼= BlxX is the blow-up of X at x. We set bx : Fx

∼= BlxX → X to be the blow-up
morphism. In the sequel, we will often use the fact that the map q : Φ → X is smooth by
[CS18, Lemma 2.1] without any further reference.

2.2. Useful isomorphisms and exact sequences. We start by recalling some basic facts about
the log resolution of Σ described in §2.1 that are used crucially in the proofs of our main
results.

First of all, by [Ull16, Proof of Lemma 2.3], we have the isomorphisms

(2.9) N ∗
Fx/Φ

∼= O⊕n
Fx

, and N ∗
Φ/P(EL)|Fx

∼= b∗xL(−2Ex),

where Ex is the exceptional divisor of bx. Moreover, by [Ull16, Proof of Lemma 2.3], the
normal bundle sequence of Fx ⊂ Φ ⊂ P(EL) is split. Consequently, by using (2.9) one
obtains the following isomorphism:

(2.10) N ∗
Fx/P(EL)

∼= O⊕n
Fx
⊕ b∗xL(−2Ex).

Denoting the ideal sheaf of Fx ⊂ P(EL) by IFx , and using (2.10), we also obtain the isomor-
phisms

(2.11) IjFx
/Ij+1

Fx
∼= SymjN ∗

Fx/P(EL)
∼=

j⊕
m=0

(n+j−m−1
n−1 )⊕

b∗x(mL)(−2mEx).
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Next, observe that we have the following commutative diagram with exact rows and
columns for p ≥ 1:

(2.12)

0 0

0 Ωp
P(EL)(log Φ)(−Φ) Ωp

P(EL) Ωp
Φ 0

0 Ωp
P(EL)(log Φ)(−Φ) Ωp

P(EL)(log Φ) Ωp
P(EL)(log Φ)|Φ 0

Ωp−1
Φ F

0 0

Since Ωp−1
Φ is locally free, for any x ∈ X, restricting the resulting exact sequence appearing

in the right vertical column on Fx, we obtain the following short exact sequence for any
p ≥ 1:

(2.13) 0→ Ωp
Φ|Fx → Ωp

P(EL)(log Φ)|Fx → Ωp−1
Φ |Fx → 0.

The above exact sequence will be essential for us in the sequel.

We now prove a proposition crucially needed in the proof of Theorem B:

Proposition 2.14. There is an isomorphism

(2.15) Hk(Φ,OΦ) ∼=
k⊕

j=0

Hk−j(X,Hj(X,OX)⊗OX).

In particular,

(2.16) h0,k(Φ) = h0,k(X)h0,0(X) + h0,k−1(X)h0,1(X) + · · ·+ h0,0(X)h0,k(X).

Proof. We note first that since the map q is smooth, we have an isomorphism

(2.17) Rq∗OΦ
∼=

⊕
Rjq∗OΦ[−j]

in Db(Coh(X)), the bounded derived category of coherent sheaves on X. Indeed, this comes
from the fact that

Rq∗CΦ
∼=

⊕
Rjq∗CΦ[−j]

[Del68, Theorem 2.11], and taking gr0F, where F is the Hodge filtration. Moreover,

(2.18) Rjq∗OΦ
∼= Hj(X,OX)⊗OX
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by [CS18, Lemma 2.2]. Taking hypercohomology Hk of (2.17), this says that

Hk(Φ,OΦ) ∼=
⊕

Hk−j(X,Hj(X,OX)⊗OX)

which is (2.15). Lastly, (2.16) follows immediately from this. □

We remark that there is a more elementary proof of (2.16) using the fact that Φ is the
blow-up of X × X along the diagonal. Lastly, we compute the direct and higher direct
images of Ω1

Φ that will be required in n the proof of Theorem D:

Lemma 2.19. The following statements hold:

(1) If n = 1, then we have the following isomorphisms for all j:

Rjq∗Ω
1
Φ
∼= Hj(OX)⊗ Ω1

X ⊕Hj(Ω1
X)⊗OX .

(2) Assume n ≥ 2. Then:
(i) Rjq∗Ω

1
Φ
∼= Hj(OX)⊗ Ω1

X ⊕Hj(Ω1
X)⊗OX for all j ̸= 1;

(ii) We have an exact sequence

0→ H1(OX)⊗ Ω1
X ⊕H1(Ω1

X)⊗OX → R1q∗Ω
1
Φ → OX → 0.

Proof. Let us denote by p1 and p2 the two projections from X ×X to its factors. Using the
diagram

X ×X X

X •

p2

p1 q2

q1

and flat base change, we deduce that Rjp1∗p
∗
2Ω

1
X
∼= q∗1R

jq2∗Ω
1
X
∼= Hj(Ω1

X)⊗OX . Combining
this with projection formula and [CS18, Lemma 2.2], we obtain

(2.20) Rjp1∗Ω
1
X×X

∼= Rjp1∗(p
∗
1Ω

1
X ⊕ p∗2Ω

1
X) ∼= Hj(OX)⊗ Ω1

X ⊕Hj(Ω1
X)⊗OX for all j.

We recall that q = p1 ◦ b∆ and note that we have the following commutative diagram:

Pn−1 ∼= Ex E∆ Φ ∼= Bl∆(X ×X)

{(x, x)} ∆ X ×X

X

j′∆

q∆ b∆

q

j∆

∼=
p0

p1

When n = 1, b∆ is an isomorphism, whence Rjq∗Ω
1
Φ
∼= Rjp1∗Ω

1
X×X and the conclusion

follows from (2.20). This proves (1).
Now assume n ≥ 2. Recall that Rjb∆∗OΦ = 0 for all j ≥ 1, and b∆∗OΦ

∼= OX×X . Using
Leray spectral sequence and projection formula, we obtain the following isomorphisms for
all j:

(2.21) Rjq∗b
∗
∆Ω

1
X×X

∼= Rjp1∗Ω
1
X×X and Rjq∗j

′
∆∗Ω

1
E∆/∆

∼= p0∗R
jq∆∗Ω

1
E∆/∆.
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Notice that q∆ : E∆
∼= P(N ∗

∆) → ∆ is the structure morphism of the projective bundle,
where N∆ is the normal bundle of ∆ ↪→ X ×X. Consequently, passing to the long exact
sequence corresponding to q∆∗ of the exact sequence

0→ Ω1
E∆/∆ → q∗∆N ∗

∆(−1)→ OE∆
→ 0,

we obtain

(2.22) Rjq∆∗Ω
1
E∆/∆

∼=

{
O∆ if j = 1;

0 otherwise.

Also, passing to the long exact sequence corresponding to q∗ of the following short exact
sequence

0→ b∗∆Ω
1
X×X → Ω1

Φ → j′∆∗Ω
1
E∆/∆ → 0,

and using (2.21), (2.22) we obtain the isomorphisms

(2.23)
q∗Ω

1
Φ
∼= p1∗Ω

1
X×X ,

Rjq∗Ω
1
Φ
∼= Rjp1∗Ω

1
X×X for all j ≥ 3.

Moreover, we also obtain the following exact sequence

(2.24) 0→ R1p1∗Ω
1
X×X → R1q∗Ω

1
Φ → OX → R2p1∗Ω

1
X×X → R2q∗Ω

1
Φ → 0.

Now, the map

OX → R2p1∗Ω
1
X×X

is injective if it is non-zero. We claim that it is the zero map. Indeed, for otherwise
R1p1∗Ω

1
X×X

∼= R1q∗Ω
1
Φ. The Leray spectral sequence

Ei,j
2 := H i(Rjq∗Ω

1
Φ) =⇒ H i+j(Ω1

Φ),

being a first quadrant spectralsequence, induces the exact sequence

0→ E1,0
2 → H1(Ω1

Φ)→ E0,1
2 → E2,0

2 .

We conclude that

(2.25) h0(R1p1∗Ω
1
X×X) = h0(R1q∗Ω

1
Φ) ≥ h1(Ω1

Φ)− h1(q∗Ω
1
Φ).

By (2.20), we compute

(2.26) h0(R1p1∗Ω
1
X×X) = (h1,0(X))2 + h1,1(X).

On the other hand, h1(Ω1
Φ)− h1(q∗Ω

1
Φ) = h1(Ω1

X×X) + 1− h1(q∗Ω
1
Φ) as Φ

∼= Bl∆(X ×X),
whence using (2.20) once again, we obtain

(2.27) h1(Ω1
Φ)− h1(q∗Ω

1
Φ) = (h1,0(X))2 + h1,1(X) + 1.

But (2.26) and (2.27) contradicts (2.25). Thus, (2.24) breaks off into the desired short exact
sequence and the isomorphism. This, combined with (2.23) and (2.20) proves (2).

The final assertion is an immediate consequence of (1) and (2) using the fact that
Ext iOX

(F , ωX) = 0 for all i ≥ 1 if F is locally free. The proof is now complete. □
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2.3. Description of the Set-up. We now formally introduce

Set-up 2.28. Let X be a smooth projective variety of dimension n. Let L be a line bundle
on X that satisfies:

• If n = 1, we assume deg(L) ≥ 2g + 3.
• If n ≥ 2, then L = Ll,d := lKX + dA + B where A and B are very ample and nef
line bundles respectively. We additionally assume for a given s ∈ N (which will be
specified in the statement of our results) that (l, d) ∈ N × N satisfies the following
conditions1:

(2.29)

l ≥ max
−1≤i≤s−1

{(
n−1
i

)
+ 1

}
,

d ≥ max

{
l(n+ 2) + 2, l(n+ 1) + 2 + s, (n+ 1)(l + 1),

max
−1≤i≤s−1

{
(n+ 2)

(
l −

(
n−1
i

)
− 1

)
+ 2(i+ 1)

((
n

i+1

)
+ 1

)} }
Let Σ := Σ(X,L) be the secant variety of X ↪→ P(H0(L)).

The next two remarks will be used repeatedly, often without any further reference.

Remark 2.30. We note, once and for all, that in the situation of Set-up 2.28, L is 3-very
ample. This is evident for n = 1. To see this for n ≥ 2, use the well-known fact that
KX + (n+ 2)A+B′ is very ample for any nef line bundle B′ as A is very ample. Write

Ll,d = [KX + (n+ 2)A+B] + [(l − 1)KX + (d− n− 2)A].

Recall that a line bundle is 1-very ample is equivalent to it being very ample, and by
[HTT05, Theorem 1.1], a tensor product of a and b-very ample line bundles is (a+ b)-very
ample when a, b ≥ 0. Thus, to prove the assertion, we simply note that d − n − 2 ≥
(l − 1)(n+ 2) + 2 as d ≥ l(n+ 2) + 2 by assumption.

Remark 2.31. We note that in the situation of Set-up 2.28, Σ is normal and has Du Bois
singularities (in particular, it is seminormal). For n = 1, this follows from [Ull16, Corollary
A] and [CS18, Theorem 1.2]. To see this for n ≥ 2, use the well-known fact that KX +(n+
1)A+B is nef as A and B are very ample and nef line bundles respectively. write

Ll,d = KX + (2n+ 2)A+ [(l − 1)KX + (d− 2n− 2)A+B].

Using [Ull16, Corollary B] and [CS18, Theorem 1.2], it is enough to show that d− 2n− 2 ≥
(l − 1)(n+ 1) which holds as d ≥ (l + 1)(n+ 1) by assumption. In other words, the above
discussion verifies that Set-up 2.28 satisfies [CS18, Assumption 1.1].

C. Du Bois complex of secant varieties

Let X be a smooth projective variety of dimension n and L a 3-very ample line bundle.
We discuss the Du Bois complex of the secant variety Σ = Σ(X,L). In particular, we prove
Theorem A and Theorem B.

1Here we introduce the convention that
(
a
b

)
= 0 if b < 0 or if b > a or if a = 0.
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3. Secant varieties with pre-p-Du Bois singularities. In this section, we give sufficient
conditions for the secant variety Σ = Σ(X,L) to have pre-p-Du Bois singularities. Recall
that this is a condition on the complex Ωp

Σ. The first result that we are after is a local
vanishing statement:

Theorem 3.1. Let p ∈ N. Suppose we are in the situation of Set-up 2.28 and assume (l, d)
satisfies (2.29) with s = min {p, n} when n ≥ 2. Then Rit∗Ω

k
P(EL)(log Φ)(−Φ) = 0 for all

i ≥ 1 and 0 ≤ k ≤ p.

Remark 3.2. This condition is sufficient for Hj(Ωp
Σ) = 0 for j ̸= 0, as is explained in the

proof of Theorem A (see (3.21)).

We need some preparations to prove the above result.

Proposition 3.3. Let i, p ≥ 1 be integers and let L be a 3-very ample line bundle. Suppose
that for all x ∈ X, j ≥ 1, and 0 ≤ q ≤ p,

(3.4) H i(Ωq
Fx
⊗ b∗x(jL)(−2jEx)) = 0.

Then Rit∗Ω
p
P(EL)(log Φ)(−Φ) = 0.

Proof. We prove the assertion using the following claims.

Claim 3.5. If H i(Ωp
P(EL)(log Φ)|Fx ⊗ b∗x(mL)(−2mEx)) = 0 for all x ∈ X and m ≥ 1, then

Rit∗Ω
p
P(EL)(log Φ)(−Φ) = 0.

Proof. Using the formal function theorem for x ∈ Σ, we obtain the isomorphism(
Rit∗Ω

p
P(EL)(log Φ)(−Φ)

)̂
x

∼= lim←−H i(Ωp
P(EL)(log Φ)(−Φ)⊗ (OP(EL)/I

j
Fx
)).

Since (Rit∗Ω
p
P(EL)(log Φ)(−Φ))y = 0 for y ∈ UX , it is enough to check that for x ∈ X,

(3.6) H i(Ωp
P(EL)(log Φ)(−Φ)⊗ (OP(EL)/I

j
Fx
)) = 0 for j ≥ 1.

Passing to the cohomology of the following exact sequence

0→ Ωp
P(EL)(log Φ)(−Φ)⊗ (IjFx

/Ij+1
Fx

)→ Ωp
P(EL)(log Φ)(−Φ)⊗ (OP(EL)/I

j+1
Fx

)

→ Ωp
P(EL)(log Φ)(−Φ)⊗ (OP(EL)/I

j
Fx
)→ 0,

we conclude that it is enough to verify that

H i(Ωp
P(EL)(log Φ)(−Φ)⊗ (IjFx

/Ij+1
Fx

)) = 0 for all j ≥ 0.

Using (2.11) and (2.9), we conclude that

H i(Ωp
P(EL)(log Φ)(−Φ)⊗ (IjFx

/Ij+1
Fx

))

∼=
j⊕

q=0

(n+j−q−1
n−1 )⊕

H i(Ωp
P(EL)(log Φ)|Fx ⊗ b∗x((q + 1)L)(−(2q + 2)Ex))

and the conclusion follows. □
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Claim 3.7. Let m ≥ 0. If H i(Ωq
Φ|Fx ⊗ b∗x(mL)(−2mEx)) = 0 for q = p − 1, p and for all

x ∈ X, then
H i(Ωp

P(EL)(log Φ)|Fx ⊗ b∗x(mL)(−2mEx)) = 0.

Proof. Follows by twisting (2.13) by b∗x(mL)(−2mEx), and passing to cohomology. □

Claim 3.8. Assume m, q ≥ 0. If

(3.9) H i(Ωq′

Fx
⊗ b∗x(mL)(−2mEx)) = 0 for all 0 ≤ q′ ≤ q and for all x ∈ X,

then H i(Ωq
Φ|Fx ⊗ b∗x(mL)(−2mEx)) = 0 for all x ∈ X.

Proof. To show this, we use the following short exact sequence

(3.10) 0→ N ∗
Fx/Φ

→ Ω1
Φ|Fx → Ω1

Fx
→ 0.

Since all these sheaves are locally free, there exists a filtration

(3.11) Ωq
Φ|Fx = F 0 ⊇ F 1 ⊇ · · · ⊇ F q ⊇ F q+1 = 0 with F l/F l+1 ∼=

l∧
N ∗

Fx/Φ
⊗ Ωq−l

Fx
.

We prove by induction that

H i(F l ⊗ b∗x(mL)(−2mEx)) = 0 for l = 0, . . . , q.

For the base case, we use the short exact sequence

0→ F q+1 = 0→ F q →
q∧
N ∗

Fx/Φ
→ 0.

We twist the sequence by b∗x(mL)(−2mEx) and take cohomology, and then the vanishing
follows from the hypothesis (3.9) by (2.9). Assume next that we know the result for l. We
use the short exact sequence

0→ F l → F l−1 →
l−1∧
N ∗

Fx/Φ
⊗ Ωq−l+1

Fx
→ 0.

Twisting by b∗x(mL)(−2mEx) and taking cohomology, the result follows from the induction
hypothesis, and (3.9) by (2.9). □

The assertion of the proposition follows by combining the above three claims. □

We show next that under the positivity condition in Theorem 3.1 when n ≥ 2, the
conditions of Proposition 3.3 are satisfied. Recall that A is a very ample and B is a nef line
bundle on X, and moreover for a given l, d ∈ N, we have

Ll,d := lKX + dA+B.

Also recall that a vector bundle E on X is called k–jet ample if for every choice of t distinct
points x1, · · · , xt ∈ X and for every tuple (k1, · · · , kt) of positive integers with

∑
ki = k+1,

the evaluation map

H0(E)→ H0
(
E ⊗

(
OX/(Ik1x1

⊗ · · · ⊗ Iktxt
)
))

=
t⊕

i=1

H0
(
E ⊗

(
OX/Ikixi

))
surjects where Ixi is the ideal sheaf of xi ∈ X.
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Lemma 3.12. Let n ≥ 2, 0 ≤ p ≤ n and j ≥ max
{p
2 , 1

}
. If l ≥ 0 and d ≥ l(n+ 1) + 2+ p

then Ωp
X(jLl,d) is (2j − p)-jet ample.

Proof. We write Ωp
X(jLl,d) = Ωp

X (2pA) (jlKX + (jd− 2p)A+ jB). It is well-known that
ΩX(2A) is globally generated (i.e. 0-jet ample), whence so is Ωp

X(2pA). Elementary con-
sideration of Castelnuovo-Mumford regularity and Kodaira vanishing theorem guarantees
that KX + (n+ 1)A and KX + (n+ 1)A+ jB are also globally generated. Moreover, since
A is a very ample line bundle, it is 1-jet ample (see [BDRS99, page 3]). Observe that we
have

jd− 2p− jl(n+ 1) ≥ 2j − p

by our assumption on d. The conclusion follows from [BDRS99, Proposition 2.3]. □

Lemma 3.13. Let n ≥ 2, 0 ≤ p ≤ n. Further assume

l ≥
(
n−1
p−1

)
+ 1 and d ≥ max

{
l(n+ 2), (n+ 2)

(
l −

(
n−1
p−1

)
− 1

)
+ 2p

((
n
p

)
+ 1

)}
.

Then H i(Ωp
X(jLl,d)) = 0 for all i, j ≥ 1.

Proof. It is easy to see using a splitting principle that det(Ωp
X) =

(
n−1
p−1

)
KX . Consequently,

we obtain

Ωp
X(jLl,d) = KX ⊗ Ωp

X(2pA)⊗ det(Ωp
X(2pA))⊗Q

where

Q =

(
jl −

(
n− 1

p− 1

)
− 1

)
KX +

(
jd− 2p−

(
n

p

)
2p

)
A+ jB.

Notice that

jd− 2p−
(
n

p

)
2p ≥ (n+ 2)

(
jl −

(
n− 1

p− 1

)
− 1

)
by assumption. Since KX +(n+2)A is very ample, we see that Q is ample. Since Ωp

X(2pA)
is nef, the assertion follows from Griffiths’ vanishing theorem ([Laz04b, Variant 7.3.2]). □

Proposition 3.14. Let n ≥ 2, 0 ≤ p ≤ n and assume (l, d) satisfies (2.29) with s = p.
Then

H i(Ωp′

Fx
⊗ b∗x(jLl,d)(−2jEx)) = 0

for all i, j ≥ 1, 0 ≤ p′ ≤ p and for all x ∈ X.

Proof. Recall from Remark 2.31 that we can write Ll,d = KX + (2n + 2)A + B′ where
B′ = (l − 1)KX + (d − 2n − 2)A + B is nef. Also recall from [CS18, Proof of Proposition
3.2] that

b∗x(jLl,d)(−2jEx) ∼= KFx + (n+ 1)P +Q

where P = b∗x(2A)(−Ex) and Q = (j − 1)(KFx + (n+ 1)P + b∗xB
′) + b∗xB

′. It is well-known
that KFx + (n+ 1)P is very ample. Since b∗xA is nef and big, we conclude that

(3.15) b∗x(jLl,d)(−2jEx) and b∗x(jLl,d)(−2Ex)−KFx are both ample ∀j ≥ 1, ∀x ∈ X.

Thus, the conclusion follows for p′ = 0 by Kodaira vanishing theorem. Henceforth we
assume p′ ≥ 1 (whence p ≥ 1). Since bx is the blow-up of X at x, we observe that



SINGULARITIES OF SECANT VARIETIES FROM A HODGE THEORETIC PERSPECTIVE 19

Ω1
Fx
(logEx)(−Ex) ∼= b∗xΩ

1
X and we deduce the following exact sequence for any x ∈ X and

for any 1 ≤ p′ ≤ p ≤ n, j ≥ 1
(3.16)

0→ b∗x(Ω
p′

X(jLl,d))(−(2j−p′+1)Ex)→ Ωp′

Fx
⊗b∗x(jLl,d)(−2jEx)→ Ωp′

Ex
⊗b∗x(jLl,d)(−2jEx)→ 0.

Notice that (3.15) also yields

(3.17) H i(Ωp′

Ex
(b∗x(jLl,d)(−2jEx))) = 0 for all i, j ≥ 1 and for all x ∈ X

by Bott vanishing theorem. Now assume 2j − p′ ≥ 0, and we use the exact sequence

(3.18) 0→ Ωp′

X(jLl,d)⊗ I2j−p′+1
x → Ωp′

X(jLl,d)→ Ωp′

X(jLl,d)⊗ (OX/I2j−p′+1
x )→ 0.

Using Lemma 3.12, we observe that the mapH0(Ωp′

X(jLl,d))→ H0(Ωp′

X(jLl,d)⊗(OX/I2j−p′+1
x ))

surjects. Passing to the cohomology of (3.18), and using Lemma 3.13, we get that

(3.19) H i(Ωp′

X(jLl,d)⊗ I2j−p′+1
x ) = 0 for i ≥ 1 and for all x ∈ X if 2j − p′ ≥ 0.

It is well-known (see for example [BEL91, Proof of Lemma 1.4]) that for 0 ≤ s ≤ n− 1

Ribx∗OFx(sEx) =

{
OFx if i = 0,

0 if i > 0.

whence H i(b∗x(Ω
p′

X(jLl,d))(−(2j − p′ + 1)Ex) = 0 by Lemma 3.13 for i ≥ 1 if 2j − p′ < 0.
Thus, using (3.19) we get

(3.20) H i(b∗x(Ω
p′

X(jLl,d))(−(2j − p′ + 1)Ex) = 0 for all i, j ≥ 1 and for all x ∈ X.

The assertion follows from (3.17), (3.20) and the cohomology sequence of (3.16). □

Proof of Theorem 3.1. Note that the statement follows for p = 0 by [CS18, Proposition 3.2].

Thus we assume p ≥ 1. Now, if n = 1 and deg(L) ≥ 2g+3, thenH i(Ωp′

Fx
⊗b∗x(jL)(−2jEx)) =

0 for all i, j ≥ 1, x ∈ X and p′ ≥ 0. This is because in this case deg(b∗x(L)(−2Ex)) ≥ 2g+1.
Consequently, the assertion follows by Proposition 3.3. Finally, we consider the case when
n ≥ 2 and p ≥ 1. But in this case the conclusion is a consequence of Proposition 3.3 thanks
to Proposition 3.14. □

Now we are ready to provide the

Proof of Theorem A. Thanks to [CS18, Theorem 1.2], we assume k ≥ 1. By [Ste85, Propo-
sition 3.3] (see also [MOPW23, §2.1]), we have an exact triangle:

(3.21) Rt∗Ω
k
P(EL)(log Φ)(−Φ)→ Ωk

Σ → Ωk
X

+1−−→

Since Hi(Ωk
X) = 0 for i ̸= 0 as X is smooth, passing to the cohomology of the above, we

obtain Hi(Ωk
Σ) = 0 for i ̸= 0 as Rit∗Ω

k
P(EL)(log Φ)(−Φ) = 0 for all i ≥ 1 and 0 ≤ k ≤ p by

Theorem 3.1. □
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4. Reflexivity condition on H0(Ωp
Σ). We now aim to describe the sheaf H0(Ωp

Σ). Recall
that for a seminormal variety with pre-p-Du Bois singularities, satisfying the codimension
condition on the singular locus, the condition missing for it to have p-Du Bois singularities is
that on degree zero, the associated graded complex of the Du Bois complex is reflexive. For
this, we discuss a reflexivity condition of the push-forward of the sheaf of p-forms discussed
in [KS21].

We work with the standing assumption that L is 3-very ample. We introduce the following
notation: UX := Σ\X and we have the inclusion jUX

: UX → Σ.

Remark 4.1. We have the isomorphism jUX ∗j
∗
UX

Ω
[p]
Σ
∼= jUX ∗Ω

p
UX

for all p ≥ 0 where

Ω
[p]
Σ := (Ωp

Σ)
∗∗. Thus, when Σ is normal, we have the isomorphism

(4.2) jUX ∗Ω
p
UX

∼= Ω
[p]
Σ .

On the other hand, we have the natural inclusion

ϕp : t∗Ω
p
P(EL) ↪→ jUX ∗Ω

p
UX

.

Thus, when Σ is normal, composing ϕp with the isomorphism (4.2), we obtain the maps

φp : t∗Ω
p
P(EL) → Ω

[p]
Σ .

Proposition 4.3. The natural inclusion ϕp : t∗Ω
p
P(EL) ↪→ jUX ∗Ω

p
UX

is an isomorphism for

0 ≤ p ≤ n − 1. In particular, if Σ is normal, then φp : t∗Ω
p
P(EL) → Ω

[p]
Σ is an isomorphism

for 0 ≤ p ≤ n− 1.

Proof. We recall from [KS21, (2.3.5)] that for all l ≥ 0, Saito’s formalism leads to a decom-
position

Rt∗Ω
l
P(EL)

∼= Kl ⊕Rl

where Kl, Rl ∈ Db(Coh(Σ)). Among other properties, Kl and Rl enjoy the following (see
loc. cit. (2.3.6), (2.3.7)):

(4.4) Supp(Rl) ⊆ Σsing ⊆ X,

(4.5) Hk(Kl) = 0 for k ≥ 2n− l + 2

where (4.4) follows from Proposition 2.2. Since t∗Ω
p
P(EL) is torsion-free, (4.4) implies that

t∗Ω
p
P(EL)

∼= H0(Kp). By [KS21, (2.3.8)] we also have the isomorphism

RHomOΣ
(Kp, ω

•
Σ)
∼= K2n+1−p[2n+ 1].

Thus, by [KS21, (2.3.9)], it is enough to show that

(4.6) dim
(
X ∩ Supp

(
Hk(K2n+1−p)

))
≤ 2n− 1− k for all k ∈ Z.

Observe that dim
(
X ∩ Supp

(
Hk(K2n+1−p)

))
≤ n whence (4.6) holds for k ≤ n − 1. On

the other hand, since the dimension of the fibers of t is ≤ n, we have Rkt∗Ω
2n+1−p
P(EL) = 0 for
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k ≥ n+1, whence (4.6) holds if k ≥ n+1. Finally, since n ≥ p+1 by assumption, we have
Hn (K2n+1−p) = 0 by (4.5), and the assertion follows. □

We need one more result in order to prove Theorem B. From the short exact sequence

(4.7) 0→ q∗Ω1
X → Ω1

Φ → Ω1
Φ/X → 0,

we have an induced morphism

γp : Ω
p
X → q∗Ω

p
Φ

by taking the wedge product of the first map and then pushing forward.

Proposition 4.8. The maps γk for k = 1, . . . , p are isomorphisms if and only if h0(X,Ωk
X) =

0 for k = 1, . . . , p.

Proof. We prove first that given the cohomological conditions, γp is an isomorphism. For
this we use (4.7) again, and the fact that all these sheaves are locally free, to obtain a
filtration

Ωk
Φ = F 0 ⊇ F 1 ⊇ · · · ⊇ F k ⊇ F k+1 = 0

with quotients F l/F l+1 ∼= q∗Ωl
X ⊗Ωk−l

Φ/X . We prove by induction that q∗F
l ∼= Ωk

X . The base

case is

0→ F k+1 = 0→ F k → q∗Ωk
X → 0,

and the claim is clear for F k by Projection Formula and [CS18, Lemma 2.2]. Suppose next
that q∗F

l ∼= Ωk
X . Consider the short exact sequence

0→ F l → F l−1 → q∗Ωl−1
X ⊗ Ωk−l+1

Φ/X → 0.

We pushforward the short exact sequence and by the Projection Formula, we have

0→ Ωk
X → q∗F

l−1 → Ωl−1
X ⊗ q∗Ω

k−l+1
Φ/X .

Since h0(Ωk−l+1
Fx

) = h0(Ωk−l+1
X ) = 0 because Fx is birational toX for all x ∈ X, by Grauert’s

Theorem ([Har77, III, Corollary 12.9]), q∗Ω
k−l+1
Φ/X = 0 and then, q∗F

l−1 ∼= Ωk
X .

Suppose next that the maps γk are isomorphisms for k = 1, . . . , p. We argue by induction.
The base case is p = 1, in which case the assumption says that Ω1

X
∼= q∗Ω

1
Φ, and therefore,

by taking H0 we obtain h1,0(X) = h1,0(Φ). By Proposition 2.14 we have

h1,0(Φ) = h0,1(Φ) = h0,1(X) + h0,1(X).

Therefore, h0,1(X) = h0,1(Φ) = 0. This means that h0(X,Ω1
X) = 0. Suppose now that

the result is known for p = r, and that γk are isomorphisms for k = 1, . . . , r + 1. By the
induction hypothesis, h0(X,Ωk

X) = 0 for k = 1, . . . , r. Moreover, since Ωr+1
X
∼= q∗Ω

r+1
Φ ,

taking H0 we obtain that hr+1,0(X) = hr+1,0(Φ). By Proposition 2.14 and the induction
hypothesis, we have

h0,r+1(Φ) = h0,r+1(X) + h0,r+1(X).

Therefore, h0,r+1(X) = h0,r+1(Φ) = 0. This means that h0(X,Ωr+1
X ) = 0. □
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Let us describe the maps δp in detail. The functoriality of Du Bois complexes induces
a canonical map Ωp

Σ → Rt∗Ω
p
P(EL) = Rt∗Ω

p
P(EL), which yields βp : H0(Ωp

Σ) → t∗Ω
p
P(EL). In

particular, when Σ is normal we obtain for all p ≥ 0, the natural map

(4.9) δp := φp ◦ βp : H0(Ωp
Σ)→ Ω

[p]
Σ .

We record a fact that we will use without any further reference.

Remark 4.10. Assume Σ is normal. The map δk is an isomorphism if and only if βk and
φk are both isomorphisms. Indeed, this follows immediately from the injectivity of φk.

We are now ready to provide the

Proof of Theorem B. Recall that Σ is normal and has Du Bois singularities. In particular,
we have the isomorphisms

(4.11) Ω
[2n+1]
Σ

∼= jUX ∗ωUX
∼= ωΣ := H−(2n+1)ω•

Σ.

Also recall that by Theorem 3.1

(4.12) R1t∗Ω
k
P(EL)(log Φ)(−Φ) = 0 for all 0 ≤ k ≤ p.

We work with the following commutative diagram with exact rows:

(4.13)

0 t∗Ω
k
P(EL)(log Φ)(−Φ) H0(Ωk

Σ) Ωk
X 0

0 t∗Ω
k
P(EL)(log Φ)(−Φ) t∗Ω

k
P(EL) q∗Ω

k
Φ 0

βk γk

where the top sequence is obtained by passing to the cohomology of (3.21), the bottom row
is obtained by taking the direct images of the sequence

0→ Ωk
P(EL)(log Φ)(−Φ)→ Ωk

P(EL) → Ωk
Φ → 0.

Both rows are exact on the right because of (4.12).

First assume H0(Ωk
X) = 0 for 1 ≤ k ≤ p. Then, by Proposition Proposition 4.8, γk is an

isomorphism for all 1 ≤ k ≤ p whence βk’s are isomorphisms in the same range. If p ≤ n−1,
then the conclusion follows since φk : t∗Ω

k
P(EL) → Ω

[k]
Σ are isomorphism by Proposition 4.3.

If p ≥ n, then Hn(OX) = 0 by assumption, whence t∗ωP(EL) ∼= ωΣ by [CS18, Theorem
5.8]. Thus, the conclusion in this case follows by [KS21, Theorem 1.4]. Conversely, assume

δk : H0(Ωk
Σ) → Ω

[k]
Σ are isomorphisms for 1 ≤ k ≤ p, whence βk’s are isomorphisms. Now

the conclusion follows again from Proposition 4.8. This completes the proof. □

Proof of Corollary C. Under our assumptions, Σ has pre-p-Du Bois singularities by Theo-
rem A and satisfies the codimension condition as p ≤ ⌊n2 ⌋. Also recall that Σ is normal and
has Du Bois singularities, and in particular is seminormal. We may assume that n ≥ 2,
p ≥ 1. Note that H0(Ωk

Σ) is reflexive for 1 ≤ k ≤ p if and only if δk’s are isomorphisms for
1 ≤ k ≤ p. The conclusion now follows from Theorem B. □
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Example 4.14 (Curves embedded by line bundles of smaller degree). Suppose X is a curve
and L is a non-special (i.e., H1(L) = 0) 3-very ample line bundle on X. In this case:

(i) Our proof shows that the singularities of Σ are pre-p-Du Bois for all p ≥ 0.
(ii) [CS18, Proof of Theorem 3.4] shows that the singularities of Σ are Du Bois if Σ is

normal.
(iii) The main result of [Ull16] asserts that Σ is normal if L(−2x) is projectively normal

for x ∈ X. In particular, via [GL86, Theorem 1] (see [Ull16, Proof of Corollary B]),
if one of the following holds:
(1) deg(L) = 2g+1 and Cliff(X) ≥ 2 (equivalently, X is not hyperelliptic, trigonal,

or plane quintic); or
(2) deg(L) = 2g + 1 and Cliff(X) ≥ 1 (equivalently X is not hyperelliptic),
then Σ is normal and has Du Bois singularities.

On a complementary direction, although the secant varieties of canonical curves with
Cliff(X) ≥ 3 is normal by [Ull16, Corollary B], it was shown in [CS18] that in this case the
singularities of Σ are not Du Bois.

5. Further results. We can actually say more about the associated graded pieces of
the Du Bois complex that are usually not considered in the definition of higher Du Bois
singularities. In particular, we aim to prove the following:

Theorem 5.1. Suppose we are in the situation of Set-up 2.28, and let δk : H0(Ωk
Σ)→ Ω

[k]
Σ

be the natural maps. Then the following statements hold.

(1) Assume (l, d) satisfies (2.29) with s = n when n ≥ 2. Then the following are
equivalent:
(i) Hn(OX) = 0,
(ii) δ2n+1 is an isomorphism,
(iii) δ2n is an isomorphism.

(2) Assume n ≥ 3 and (l, d) satisfies (2.29) with s = n. Let n + 2 ≤ p ≤ 2n − 1. If
Hk(OX) = 0 for all k ≥ p− n− 1, then δp is an isomorphism.

In order to prove part (2) of the above theorem, we need another local vanishing result:

Proposition 5.2. Let i, p ≥ 1 be integers and let L be a 3-very ample line bundle. Suppose
that for all x ∈ X, j ≥ 0, and 0 ≤ q ≤ p,

(5.3) H i(Ωq
Fx
⊗ b∗x(jL)(−2jEx)) = 0.

Then Rit∗Ω
p
P(EL)(log Φ) = 0.

Proof. As we did in the proof of Proposition 3.3, we first prove the following

Claim 5.4. If H i(Ωp
P(EL)(log Φ)|Fx ⊗ b∗x(mL)(−2mEx)) for all x ∈ X and for all m ≥ 0

then Rit∗Ω
p
P(EL)(log Φ) = 0.

Proof. Clearly (Rit∗Ω
p
P(EL)(log Φ))y = 0 if y ∈ Σ and y /∈ X. For x ∈ X, we use the formal

function theorem(
Rit∗Ω

p
P(EL)(log Φ)

)̂
x

∼= lim←−H i(Ωp
P(EL)(log Φ)⊗ (OP(EL)/I

j
Fx
)).
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Thus, in order to prove the assertion, it is enough to show that

(5.5) H i(Ωp
P(EL)(log Φ)⊗ (OP(EL)/I

j
Fx
)) = 0 for all j ≥ 1.

Passing to the cohomology of the exact sequence

0→ Ωp
P(EL)(log Φ)⊗ (IjFx

/Ij+1
Fx

)→ Ωp
P(EL)(log Φ)⊗ (OP(EL)/I

j+1
Fx

)

→ Ωp
P(EL)(log Φ)⊗ (OP(EL)/I

j
Fx
)→ 0,

(5.6)

we conclude that to prove (5.5), it is enough to show that

(5.7) H i(Ωp
P(EL)(log Φ)⊗ (IjFx

/Ij+1
Fx

)) = 0 for all j ≥ 0.

Observe that by (2.11), we have
(5.8)

H i(Ωp
P(EL)(log Φ)⊗ (IjFx

/Ij+1
Fx

)) ∼=
j⊕

m=0

(n+j−m−1
n−1 )⊕

H i(Ωp
P(EL)(log Φ)|Fx ⊗ b∗x(mL)(−2mEx))

and the conclusion follows. □

We now invoke Claim 3.7 and Claim 3.8, which immediately completes the proof. □

The previous result can be used to obtain one more reflexivity statement:

Proposition 5.9. Let n ≥ 3 and n+ 2 ≤ p ≤ 2n− 1. Assume the following conditions:

(i) Hn(Ωq
Fx
⊗ b∗x(jL)(−jEx)) = 0 for all j ≥ 1, 0 ≤ q ≤ 2n+ 1− p,

(ii) H0(Ωn−q
X ) = 0 for all 0 ≤ q ≤ 2n+ 1− p.

Then the two natural maps

t∗Ω
p
P(EL)(log Φ)(−Φ) ↪→ t∗Ω

p
P(EL) ↪→ jUX ∗Ω

p
UX

are isomorphisms. In particular, if (i) and (ii) hold and if Σ is normal, then the map

t∗Ω
p
P(EL)(log Φ)(−Φ)→ Ω

[p]
Σ

is an isomorphism.

Proof. We first note the following isomorphisms

RHomOΣ

(
Rt∗Ω

p
P(EL)(log Φ)(−Φ), ω

•
Σ

)
∼= Rt∗RHomOP(EL)

(
Ωp
P(EL)(log Φ)(−Φ), ωP(EL)[2n+ 1]

)
∼= Rt∗Ω

2n+1−p
P(EL) (log Φ)[2n+ 1],

where the first one is obtained via duality. Observe that it is enough to show that the
natural map

t∗Ω
p
P(EL)(log Φ)(−Φ) ↪→ jUX ∗Ω

p
UX

is an isomorphism. Thus, by [KS21, Proposition 6.4], it is enough to show that

(5.10) dim
(
X ∩ Supp

(
RkΩ2n+1−p

P(EL) (log Φ)
))
≤ 2n− 1− k for all k ∈ Z.
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As in the proof of Proposition 4.3, (5.10) holds if k ≤ n − 1 or if k ≥ n + 1. Thus it is
enough to show that

(5.11) RnΩ2n+1−p
P(EL) (log Φ) = 0.

Notice that

(5.12) Hn(Ωq
Fx
⊗ b∗x(jL)(−jEx)) = 0 for all j ≥ 0, 0 ≤ q ≤ 2n+ 1− p.

Indeed (5.12) follows from hypothesis (i) for j ≥ 1. For j = 0, the vanishing follows

from hypothesis (ii) as we have hn(Ωq
Fx
) = h0(Ωn−q

Fx
) = h0(Ωn−q

X ). Now (5.11) follows from
Proposition 5.2. □

Proof of Theorem 5.1. Recall that under our assumption, Σ is normal and has Du Bois sin-
gularities. We also recall that δk is an isomorphism if and only if βk and φk are isomorphisms.

We first prove (1) and set p = 2n+ 1. It follows from the middle column of (4.13) that

H0(Ω2n+1
Σ ) ∼= t∗ωP(EL).

Thus, using (4.11), we see that the equivalence of (i) and (ii) is a consequence of [CS18,
Theorem 5.8]. We now show the equivalence of (i) and (iii). If (i) holds, then as before,
we see that the inclusion t∗ωP(EL) ↪→ jUX ∗ωUX

∼= ωΣ is an isomorphism by [CS18, Theorem
5.8]. Thus, by [KS21, Theorem 1.5], we see that the two morphisms

t∗Ω
2n
P(EL)(log Φ)(−Φ) ↪→ t∗Ω

2n
P(EL) ↪→ jUX ∗Ω

2n
UX

are both isomorphisms. Consequently, it follows from (4.13) that β2n and φ2n are both
isomorphisms. Conversely, assume (iii) holds. Then (4.13) implies H0(ωΦ) = 0 whence by
Proposition 2.14 we get H0(ωX) = 0 which is (i).

Now we prove (2). Since p ≥ n+ 2 by assumption, it follows from the first row of (4.13)
that

t∗Ω
p
P(EL)(log Φ)(−Φ)

∼= H0(Ωp
Σ).

The conclusion now follows from (4.13), Proposition 5.9 and Proposition 3.14. □

Remark 5.13. If the natural map δk : H0(Ωk
Σ)→ Ω

[k]
Σ is an isomorphisms for some k ≥ 1,

then

min
{
h0(Ωk−i

X ), h0(Ωi
X)

}
= 0 for all 0 ≤ i ≤ k.

Indeed, since δk is an isomorphism, βk is also an isomorphism. Consequently, from (4.13)
we see that γk is an isomorphism, whence h0(Ωk

X) = h0(Ωk
Φ). The conclusion now follows

from Proposition 2.14.

Corollary 5.14. Let p ∈ N. Suppose we are in the situation of Set-up 2.28. If one of the
following holds:

(i) n = 1 (whence deg(L) ≥ 2g + 3 by our assumption), p ≥ 0, and Hk(OX) = 0 for
1 ≤ k ≤ p;

(ii) n ≥ 2, p ≥ 0, (l, d) satisfies (2.29), with s = min {p, n}, and Hk(OX) = 0 for
1 ≤ k ≤ p;
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(iii) n ≥ 2, (l, d) satisfies (2.29) with s = n, p ∈ {2n, 2n+ 1}, and Hn(OX) = 0;
(iv) n ≥ 3, (l, d) satisfies (2.29) with s = n, n + 2 ≤ p ≤ 2n − 1, and Hk(OX) = 0 for

all k ≥ p− n− 1;

then there is a natural quasi-isomorphism Ωp
Σ
∼= Ω

[p]
Σ .

Remark 5.15. Notice that the conditions (i) and (ii) are vacuous when p = 0.

Proof. This is an immediate consequence of Theorem A, Theorem B and Theorem 5.1. □

Corollary E and Corollary F are special cases of the following more general results:

Corollary 5.16. Let p ∈ N. Suppose we are in the situation of Set-up 2.28, and let L be
an ample line bundle on Σ. If one of the conditions (i), (ii), (iii) or (iv) of Corollary 5.14
holds, then

Hq(Ω
[p]
Σ ⊗ L) = 0 when p+ q > dimΣ = 2n+ 1.

Proof. This is an immediate consequence of Corollary 5.14 and [GNAPGP88, Theorem
V.5.1]. □

Corollary 5.17 (Description of the h-differentials). Let p ∈ N. Suppose we are in the
situation of Set-up 2.28. If one of the conditions (i), (ii), (iii) or (iv) of Corollary 5.14

holds, then there is a natural isomorphism Ωp
h|Σ ∼= Ω

[p]
Σ .

Proof. This is an immediate consequence of Corollary 5.14 and [HJ14, Theorem 7.12]. □

D. Higher rational singularities of secant varieties

As before, it is our standing assumption that X is a smooth projective variety and L is
a 3-very ample line bundle on X. Here we study the dual DΣ(Ω

p
Σ). In particular, we prove

Theorem D.

6. Cohomology of the dual of Ωp
Σ. Recall that for a variety Z, we set

DZ(−) := RHomOZ
(−, ω•

Z)[−dimZ].

If Z ⊂ W is of codimension c, we have DW (−) ∼= DZ(−)[−c] for complexes supported on
Z.

Remark 6.1. Since L is 3-very ample, we have (3.21), dualizing which (with obvious
modifications of wedge powers) we obtain the exact triangle:

(6.2) DΣ(Ω
2n+1−k
X )→ DΣ(Ω

2n+1−k
Σ )→ Rt∗Ω

k
P(EL)(log Φ)

+1−−→ .

Thus, we have the isomorphisms DΣ(Ω
2n+1−k
Σ ) ∼= Rt∗Ω

k
P(EL)(log Φ) for 0 ≤ k ≤ n; in

particular

Hi(DΣ(Ω
2n+1−k
Σ )) ∼= Rit∗Ω

k
P(EL)(log Φ) for all 0 ≤ k ≤ n, i ≥ 0.

We first have the following results for the cohomology of the dual complex:

Lemma 6.3. The following assertions hold for all 0 ≤ k ≤ 2n+ 1:
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(1) Hi(DΣ(Ω
2n+1−k
Σ )) ∼= Rit∗Ω

k
P(EL)(log Φ) for all 0 ≤ i ≤ n− 1.

(2) If i ≥ n+ 2, then Hi(DΣ(Ω
2n+1−k
Σ )) = 0.

Proof. We start by observing the following consequence of the smoothness of X:

(6.4) DΣ(Ω
2n+1−k
X ) ∼= DX(Ω2n+1−k

X )[−n− 1] ∼=

{
Ωk−n−1
X [−n− 1] if k ≥ n+ 1;

0 otherwise.

Thus

(6.5) Hi(DΣ(Ω
2n+1−k
X )) ∼=

{
Ωk−n−1
X if i = n+ 1 and k ≥ n+ 1;

0 otherwise.

Consequently, we obtain (1) from (6.2). Further, Rit∗Ω
k
P(EL)(log Φ) = 0 for i ≥ n + 1,

whence by (6.2) we conclude that for all 0 ≤ k ≤ 2n− 1, we have

Hi(DΣ(Ω
2n+1−k
X )) ∼= Hi(DΣ(Ω

2n+1−k
Σ )) for all i ≥ n+ 2.

The conclusions now follow from (6.5). □

We end this section by showing that we can say more about H0(τk), a fact that will not
be used in the sequel. Recall that we have the natural map

τk : Ωk
Σ → DΣ(Ω

2n+1−k
Σ ).

The induced map H0(τk) via the isomorphism of Lemma 6.3 (1) can be identified with

ϕ′
k ◦ βk : H0(Ωk

Σ)→ t∗Ω
k
P(EL)(log Φ)

where ϕk : t∗Ω
k
P(EL) ↪→ jUX ∗Ω

k
UX

is the composition of the two inclusions ϕ′
k, ϕ

′′
k described

in the following diagram:

t∗Ω
k
P(EL) t∗Ω

k
P(EL)(log Φ) jUX ∗Ω

k
UX

ϕ′
k

ϕk

ϕ′′
k

In particular, when Σ is normal, the maps δk : H0(Ωk
Σ) → Ω

[k]
Σ in (4.9) is the composition

of H0(τk) and an inclusion.

Remark 6.6. We observe that

(a) H0(τk) is an isomorphism if and only if βk and ϕ′
k are isomorphisms.

(b) ϕk is an isomorphism if and only if ϕ′
k and ϕ′′

k are isomorphisms.

Also recall that if Σ is normal, then δk is an isomorphism if and only if βk and ϕk are
isomorphisms. In particular, if Σ is normal and δk is an isomorphism, then H0(τk) is also
an isomorphism.

We have the following consequence of Theorem B and Theorem 5.1:
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Proposition 6.7. Suppose we are in the situation of Set-up 2.28. Let

H0(τk) : H0(Ωk
Σ)→ H0(DΣ(Ω

2n+1−k
Σ ))

be the natural maps. Then the following hold:

(1) Let 0 ≤ p ≤ 2n+1, and assume (l, d) satisfies (2.29) with s = min{p, n} when n ≥ 2.
Then H0(τk)’s are isomorphisms for all 0 ≤ k ≤ p if and only if Hk(OX) = 0 for
all 1 ≤ k ≤ p2.

(2) Assume (l, d) satisfies (2.29) with s = n when n ≥ 2. If Hn(OX) = 0 then H0(τ2n+1)
and H0(τ2n) are isomorphisms.

(3) Assume n ≥ 2, (l, d) satisfies (2.29) with s = n, and let n + 2 ≤ p ≤ 2n − 1. If
Hn−k(OX) = 0 for all 0 ≤ k ≤ 2n+ 1− p, then H0(τp) is an isomorphism.

Proof. We first recall that Σ is normal. Notice that (2) and (3) follow by Theorem 5.1 (1),
(2) and Remark 6.6.

We now prove (1). Recall that we have the diagram (4.13) with exact rows for all
0 ≤ k ≤ p. Since q∗OΦ

∼= OX by (2.18), it follows that β0 is an isomorphism. Also, ϕ0 is an
isomorphism as Σ is normal whence ϕ′

0 is an isomorphism by Remark 6.6 (b). Thus H0(τ0)
is an isomorphism by Remark 6.6 (a).

We now assume k ≥ 1, hence p ≥ 1. If H0(τk) is an isomorphism for all 1 ≤ k ≤ p, then
βk’s whence γk’s are isomorphisms in the same range. Thus H0(Ωk

X) = 0 for all 1 ≤ k ≤ p
by Proposition 4.8. The converse follows from Theorem B and Remark 6.6. □

7. Secant varieties with pre-1-rational singularities. We now prove Theorem D.

Proof of Theorem D. Observe that by Remark 6.1

(7.1) Hi(DΣ(Ω
2n+1−k
Σ )) ∼= Rit∗Ω

k
P(EL)(log Φ) for all 0 ≤ k ≤ 1, i ≥ 0.

Assume (1) holds. Then by (7.1), we have R1t∗Ω
1
P(EL)(log Φ) = 0. Using the restriction

sequence and Theorem 3.1, we obtain that

R1t∗Ω
1
P(EL)(log Φ)

∼= R1q∗Ω
1
P(EL)(log Φ)|Φ = 0.

This, by the exact sequence

0→ Ω1
Φ → Ω1

P(EL)(log Φ)|Φ → OΦ → 0

implies that the resulting map q∗OΦ → R1q∗Ω
1
Φ is surjective. But

rank(q∗OΦ) = 1 and rank(R1q∗Ω
1
Φ) =

{
nh1,0(X) + h1,1(X) + 1 if n ≥ 2;

nh1,0(X) + h1,1(X) if n = 1

where the second equality follows from Lemma 2.19. Thus, we conclude that n = 1 and
(X,L) is a rational normal curve of degree ≥ 3.

2Notice that this condition is vacuous when p = 0.
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Now we prove the converse, and assume (X,L) is a rational normal curve of degree ≥ 3.
We claim that

(7.2) Rit∗Ω
k
P(EL)(log Φ) for all 0 ≤ k ≤ 1, i ≥ 1.

Notice that (7.2) holds for k = 0 by [CS18, Corollary 1.5]. Since (7.2) holds for i ≥ 2, it is
enough to show (7.2) for i = k = 1. We first show that

(7.3) H1(Ω1
P(EL)(log Φ)|Fx) = 0 for all x ∈ X.

Notice that in this case, Fx
∼= P1, Φ ∼= P1 × P1 and one sees easily that h1(Ω1

Φ|Fx) =
h1(Ω1

Fx
) = 1. Passing to the cohomology of the exact sequence

(7.4) 0→ Ω1
Φ|Fx → Ω1

P(EL)(log Φ)|Fx → OFx → 0,

and by (3.10), we obtain the composite map

(7.5) H0(OFx)→ H1(Ω1
Φ|Fx)→ H1(Ω1

Fx
)

Now we observe that the composition of the maps (7.5) sends 1 ∈ H0(OFx) to cl(Φ|Fx) ∈
H1(Ω1

Fx
) whence it is injective as cl(Φ|Fx) is not cohomologically trivial. Consequently, the

connecting map H0(OFx)→ H1(Ω1
Φ|Fx) obtained from (7.4) is injective. Thus, (7.3) follows

by passing to the cohomology of (7.4) as H1(OFx) = 0. Recall that by Claim 5.4, in order
to show (7.2) it is enough to prove that

H1(Ω1
P(EL)(log Φ)|Fx ⊗ b∗x(mL)(−2mEx)) = 0 for all m ≥ 0, x ∈ X.

This holds for m = 0 by (7.3), and for m ≥ 1 this is a consequence of

H i(Ωq
Φ|Fx ⊗ b∗x(mL)(−2mEx)) = 0 for all m ≥ 1, x ∈ X, q = 0, 1

via Claim 3.7, which is easy to see as the degree of the curve is ≥ 3 (or use Claim 3.8). □

Proof of Corollary G. Since dim(Σ) = 3, it is enough to show (0.5) when 0 ≤ p ≤ 1. This
is an immediate consequence of Theorem D and [SVV23, Corollary 4.1]. □
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