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My research is in low-dimensional topology, where I study surfaces of both finite and
infinite-type and objects constructed from them. For finite-type surfaces, I am interested in
understanding Teichmüller space – the space of all hyperbolic metrics on the surface. I study
this space by looking at geodesics in the Thurston metric.

I study infinite-type surfaces by looking at combinatorial graphs that are built from them,
such as the grand arc graph [6], and by examining the actions of mapping class groups on
these objects.

My research has two main focuses. The first is to answer questions posed by Papadopoulos–
Théret [38] about geodesics in the Thurston metric. The second is to follow the work of
Bavard-Walker, Patel-Miller-Patel and Fanoni–Ghaswala–McLeay [8, 7, 1, 16] to study δ-
hyperbolic metric spaces coming from infinite-type surfaces with the hopes of reproducing a
Nielsen-Thurston type classification.

1. Teichmüller theory and the Thurston metric

For any surface S with χ(S) < 0, Teichmüller space, T (S) is the space of all hyperbolic
structures on S up to homotopy isotopic to the identity. I study Teichmüller space by endowing
it with a metric called the Thurston metric, which Thurston showed can be described in two
different ways [43]:

dTh(X, Y ) = log

(
inf

ϕ:X→Y
Lϕ

)
= sup

α∈π1(S)
log

(
lα(Y )

lα(X)

)
where ϕ is Lipschitz, and in an appropriate homotopy class, and lα(X) is the length of α
on the hyperbolic structure X. The infimum is realized by an optimal map, and the above
supremum is realized when passing to chain-recurrent laminations, which are Hausdorff limits
of simple closed curves. The intersection of all such laminations that are limits of curves
approaching the supremum is a nonempty lamination that depends only on X and Y . This
lamination is denoted by Λ(X, Y ) and is called the maximally-stretched lamination.

The space (T (Sg), dTh) is a geodesic metric space, and when Λ(X, Y ) is maximal with
respect to inclusion, a construction of Thurston shows that there exists a unique geodesic
between X and Y , called a stretch path [43]. Generic geodesics in the Thurston metric are
not unique [29], and for X, Y ∈ T (S), we can define the geodesic envelope as the collection
of all points in Teichmüller space that appear along geodesic paths from X to Y .

There are many open questions about the geodesic envelope [15, 38]:

Question 1. (Problem V in [38]) Describe an arbitrary geodesic in the Thurston metric. In
particular, is any geodesic a limit of a concatenations of stretch paths?

Question 2. (Problem 2.2 in [41]) Given X, Y ∈ T (S), describe the set Env(X, Y ) = ∪G,
where G denotes a Thurston geodesic connecting X to Y .
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In recent work of Huang-Oshika-Papadopoulos [23], infinitesimal properties of the Thurston
metric are studied, and a rich stratification structure is shown to exist on the unit tangent
sphere at any point in T (S).

In my Ph.D. thesis [4], I study the shape and width of the geodesic envelope, in a similar
way to [23] studying the tangent sphere. I prove that, while geodesic paths aren’t necessarily
unique, there are specific surfaces for which any two geodesic paths from X to Y stay close
together in Teichmüller space:

Theorem 1 (A. Bar-Natan, 2022). If S = S1,1 or S = S0,4 then there exists a constant c such
that for any two geodesics in T (S), g1(t) and g2(t) from X to Y , we have dTh(g1(t), g2(t)) ≤ c.

Figure 1. The Infinites-
imal geodesic envelope in
T (S2)

The difficulty in proving this theorem lies in understanding
the shape of the geodesic envelope. A useful tool to study the
envelope is the infinitesimal envelope, defined to be the set
of all 1-jets of geodesics from X to Y . I show that one can
understand the infinitessimal envelope using stretch paths, and
then apply this to the geodesic envelope as a whole.

Theorem 2 (A. Bar-Natan, 2022). If v is a vector in the
infinitesimal envelope, then v is a convex combination of 1-jets
of stretch paths. Moreover, 1-jets of stretch paths corresponding
to maximal chain-recurrent laminations are extremal in the
infinitesimal envelope.

To prove Theorem 1, I show that the geodesic envelope is an
intersection of two cone-offs of the infinitesimal envelope as in
[15]. I then use coarse estimates of the Thurston metric coming
from [15], and estimate the lengths of earthquake paths to yield the result. A key step in the
proof is the following lemma:

Lemma 1 (A. Bar-Natan, 2022). Let α be a simple closed curve in S, then there exists some
C = C(S) such that for any X ∈ T (S),

dTh(X,Eqα,t(X)) ≤ log(elα(X)/2t) + C

Where Eqα,t is the path starting at X and earthquaking along α.
I will use this research project as a jumping off point to answer further questions about the

combinatorial structure of the infinitesimal envelope and about geodesic envelopes in general:

Research Goal. In what sense are geodesic envelopes foliated by stretch paths? Is there a
combinatorial structure of a convex body on the full geodesic envelope that comes from the
infinitesimal picture?

By using the machinery in [29] and adapting their methods of “sufficiently horizontal”
foliations to this context, I want to prove a theorem similar to Theorem 1 when Λ(X, Y ) is a
lamination that is “close to” filling.

Research Goal. Assume that there exists an ε > 0 such that an ε-neighbourhood of Λ(X, Y )
is filling. Does there exist a bound on the width geodesic envelope from X to Y depending
only on the underlying surface and on ε?
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2. Infinite-type surfaces

If S is a surface, we define the mapping class group of S, denoted Map(S), as the group of
homeomorphisms of S up to homotopy. Map(S) is a finitely-generated [30] discrete group
that has been extensively studied in the 1900s by Dehn, Nielsen, and Thurston [13, 44]. The
celebrated Nielsen-Thurston classification [44] says that any mapping class is one of the
following:

• Elliptic, meaning that it has finite order in Map(S), or
• Reducible, meaning that it fixes a collection of homotopy classes of simple closed

curves, or
• Pseudo-Anosov, meaning that it preserves two transverse singular foliations on the

surface.

In other words, a mapping class either repeats itself like a reflection, leaves a part of the
surface untouched, or jumbles up the surface in a very precise and tractable way.

Figure 2. A small part of
the curve graph

A powerful tool used to study the mapping class group is
the curve graph (c.f. [31, 32, 40, 17]). Originally defined by
Harvey [20], the curve graph of a surface S, denoted C(S), is
the graph whose vertices are isotopy classes of simple closed
curves, and whose edges correspond to the existence of disjoint
representatives. The curve graph and the mapping class group
are intimitely related by a natural action of Map(S) on C(S)
by setting [f ] ◦ [α] = [f(α)]. The curve graph has important
properties as a metric space: it is δ-hyperbolic [22, 32], infinite-
diameter [40], and its automorphism group is the mapping class
group of the surface [10]. Moreover, it can detect the Nielsen
Thurston classification: g ∈ Map(S) is pseudo-Anosov if and only if the action of g on C(S)
is loxodromic, meaning that, up to bounded error, g acts as a translation along some axis in
C(S).

My research focuses on trying to find infinite-type analogues of the Nielsen Thurston
classification.

2.1. The Grand Arc Graph: An infinite-type surface is a surface whose fundamental
group is not finitely generated.

Figure 3. Some finite and
infinite-type surfaces

When Σ is infinite-type, C(Σ) has diameter 2, and is therefore
not as useful as in the finite-type case. In AIM Workshop on
infinite-type surfaces, the following question was posed:

Question 3 (AIM Workshop Problem 2.1). What combinato-
rial objects are “good” analogues of the curve complex, either
uniformly for all infinite-type surfaces or for some class of
infinite-type surfaces?

My work with Verberne generalizes past works [8, 7, 16] to
define the grand arc graph, G(Σ), and in [6] we prove:

Theorem 3 (A. Bar-Natan, Y. Verberne, 2021). Let Σ be any
surface with at least 3, and finitely-many self-similar equivalence classes of maximal ends.

3



Then G(Σ) is a nonempty, connected, infinite-diameter δ-hyperbolic metric space. Moreover,
the constant δ is independent of Σ.

2.2. Describing the Boundary: For finite-type surfaces, by studying the visual boundary
of the curve graph [26], one can distill a new proof of the celebrated Nielsen-Thurston
classification [9]. Thus, I hope to:

Research Goal. Use the grand arc graph and its visual boundary, to create a Nielsen-
Thurston type classification for mapping class groups of infinite-type surfaces.

A big step in the project is to describe the visual boundary of the grand arc graph and the
induced action of the mapping class group. Verberne and I already prove [6]:

Theorem 4 (A. Bar-Natan, Y. Verberne, 2021). The action of the mapping class group is
not continous on G(Σ), nevertheless, it is continuous on the visual boundary of G(Σ)

The next step is to identify when mapping classes are loxodromic, elliptic (ie, fixing a point
in G(Σ)), or parabolic (ie, fixing a point on ∂G(Σ)).

Some examples of elliptic and loxodromic homeomorphisms already exist [6, 2], but it is
still unknown if any parabolic homeomorphisms exist.

Research Goal. Do any mapping classes act parabolically on the visual boundary of the
grand arc graph?

In the Nielsen Thurston classification, pseudo-Anosov mapping classes are characterized
by their loxodromic action on the curve graph. We show that a similar picture happens for
infinite-type surfaces [6]:

Theorem 5 (A. Bar-Natan, Y. Verberne, 2021). If Σ is an infinite-type surface with nonempty
grand arc graph, and if W ⊂ Σ is a finite-type witness for the grand arc graph, and ϕ ∈
Map(W ) is a pseudo-Anosov mapping class, then ϕ̄ ∈ Map(Σ) defined by taking ϕ on W and
id on W c acts loxodromically on the grand arc graph.

Witnesses are subsurfaces that intersect every grand arc, and have been used to study
many arc and curve graphs [40].

2.3. Constructing Loxodromic Actions: These “pseudo-Anosov” mapping classes are all
compactly supported, and in order to obtain a clearer picture of a possible Nielsen-Thurston
classification, we would like to find non-compactly supported infinite-type mapping classes
that act loxodromically on arc complexes.

For finite-type surfaces, Penner’s construction of pseudo-Anosov mapping classes [39] says
that if α and β are a pair of curves of distance ≥ 2 in the curve graph, then the composition
of Dehn twists around α and β is a pseudo-Anosov mapping class. Dehn twists act elliptically
on the curve graph, and in the infinite-type setting, they are joined by handle shifts as simple
examples of mapping classes. A handle shift is a mapping class which is supported on a
“periodic” strip of a surface, and acts by shifting everything in the strip in a Z-action.

In a recent paper [2], Abbott, Miller, and Patel use handle-shifts to construct infinte-type
mapping classes that act loxodromically on the relative arc graph. Their construction uses
three handle shifts, and could generalize to the grand arc graph with some care.

Research Goal. Generalize the constructions of [2] to the grand arc graph, and use them to
construct infinite-type loxodromic actions on the grand arc graph.
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3. Previous Research and Publications

My previous research was centered around low-dimensional topology, metric geometry, and
geometric group theory.

Figure 4. An
edge in the flip
graph corresponds
to a flip move.

3.1. Flip Graphs of Infinite-type Surfaces. The triangulation graph,
T (S) of a surface, is the graph whose nodes are triangulations with
vertices at punctures of S, and whose edges are flip moves (see figure 4).

When S is a finite-type surface, T (S) is an infinite-diameter connected
metric space [21, 19], and the mapping class group, Map(S) acts naturally
on it. For almost all surfaces, Map(S) and T (S) are quasi-isometric, and
MF(S) = T (S)/Map(S) has finite diameter [14]. Thus, T (S) provides
a combinatorial analogue of Teichmüller space when S is finite-type, and
is an interesting object of study.

When a surface Σ is of infinite-type, single flips prove to be too
restrictive, so we redefine edges in T (Σ) to allow for infinitely-many simultaneous flips in
disjoint quadrilaterals. We call this new graph the flip graph, and denote it by F(Σ). The flip
graph has uncountably-many connected components [18], coming from orbits of the mapping
class group. Nevertheless, we may check Ivanov’s metaconjecture [24], which does hold for
T (S) for almost all finite-type surfaces [10].

Question 4 (Ivanov’s Metaconjecture). Every object naturally associated to a surface S and
having a sufficiently rich structure has Map(S) as its groups of automorphisms.

Throughout my time at Canada/USA Mathcamp, I worked with a group of high-schoolers,
A. Goel, B. Halstead, P. Hamrick, S. Shenoy, and R. Verma to study this generalization, and
answered it in the following:

Theorem 6 (A. Bar-Natan, A. Goel, B. Halstead, P. Hamrick, S. Shenoy, and R. Verma,
2022). If Σ is an infinite-type surface, then there exist automorphisms of F(Σ) which are not
induced by any mapping class of Σ.

3.2. The gerrymandering jumble. In political redistricting, the compactness of a district
is used as a quantitative proxy for its fairness. Several well-established, yet competing, notions
of geographic compactness are commonly used to evaluate the shapes of regions, including
the Polsby-Popper score (isoperimetric ratio), the convex hull score (ratio of area to convex
hull area), and the Reock score (ratio of area to area of minimal bounding circle). These
scores are used to compare two or more districts or plans, and each of these scores can be
computed on the sphere or in R2 after passing through a map projection.

As a basis for legal frameworks, these scores were thought to be resilient against differing
map projections from S2 to the plane [11, 28, 12]. However, in a paper, joint with L. Najt
and Z. Schutzman, we prove that this is not the case:

Theorem 7. [A. Bar-Natan, L. Najt, Z. Schutzman, 2020] For any of the above compactness
scores, and any map projection ϕ : U → R2 defined on U ⊂ S2, there exist regions A and B
such that A is more compact than B on the sphere, but ϕ(B) is more compact than ϕ(A).

3.3. Medium-scale Ricci curvature for croups. In the 2000s, Ollivier defined a notion
of metric Ricci curvature at finite scales for graphs and other non-manifold geometries
[34, 35, 36, 37] by offering a geometric interpretation of classical Ricci curvature as follows:

5



curvature measures the extent to which corresponding points on spheres are “closer together”
or “farther apart” than the centers of the spheres. Inspired by this definition, together with
M. Duchin and R. Kropholler [5], we propose a new notion of curvature on a finitely-generated
group, denoted by κ : G→ R≥0.

We then show various properties of this curvature, and that this curvature can detect some
flatness properties of the group G:

Theorem 8 (A. Bar-Natan, M. Duchin, R. Kropholler, 2020). Let G be any group.

• If G is generated by a symmetric set S for which κ(s) = 0 for all s ∈ S. Then G is
virtually abelian.
• If G is virtually abelian with a finite-index free abelian subgroup H, then there exists

a generating set S for which κ(h) = 0 for any h ∈ H.

These results have been studied further in various contexts, ranging from further extensions
of our work on conjugation curvature on hyperbolic groups [25], to lamplighter and Houghton’s
group [27], to growth rates of groups [33] and to solvable Baumslag-Solitar groups [42].

3.4. 2-systems of arcs on a punctured disk. In the field of combinatorial topology, we
are often interested in maximal families of curves or arcs (always considered up to homotopy)
that have specific properties. In my masters’ thesis, I proved the following theorem [3] about
families of arcs intersecting twice:

Theorem 9 (A. Bar-Natan, 2020). Let Dn be the n-punctured disk. Let A be a family of
essential simple arcs with endpoints on ∂Dn which are pairwise nonhomotopic and pairwise
intersect at most twice. Then |A| ≤

(
n+1
3

)
.
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