1 The Problem $\text{SUB}(G)$

Convention 1 (Graphs).

Graphs are finite simple graphs with no isolated vertices. Formally, a graph G consists of a finite vertex set $V(G)$ and an edge set $E(G) \subseteq \binom{V(G)}{2}$ such that $\bigcup_{e \in E(G)} e = V(G)$. There are $2^{|E(G)|}$ subgraphs of G. (We may thus identify subgraphs G with elements of the Boolean hypercube $\{0, 1\}^{E(G)}$

For $k \geq 2$: K_k denotes the complete graph of order k, and P_k denotes the path of order k.

Definition 2 (The Blow-Up $G^{\uparrow n}$ of a Graph G).

For a graph G and $n \in \mathbb{N}$, let $G^{\uparrow n}$ denote the graph
\[
V(G^{\uparrow n}) = \{v(i) : v \in V(G), \ i \in [n]\},
\]
\[
E(G^{\uparrow n}) = \{\{v(i), w(j)\} : \{v, w\} \in E(G), \ i, j \in [n]\}.
\]

For $\alpha \in [n]^{V(G)}$, let $G^{\uparrow \alpha}$ denote the graph
\[
V(G^{\uparrow \alpha}) = \{v(\alpha_v) : v \in V(G)\},
\]
\[
E(G^{\uparrow \alpha}) = \{\{v(\alpha_v), w(\alpha_w)\} : \{v, w\} \in E(G)\}.
\]

Each $G^{\uparrow \alpha}$ is an isomorphic copy of G that sits inside $G^{\uparrow n}$.

We have a similar notation for subgraphs of G and their copies inside $G^{\uparrow n}$. For $H \subseteq G$ and $\beta \in [n]^{V(H)}$, let $H^{\uparrow \beta}$ denote the graph
\[
V(H^{\uparrow \beta}) = \{v(\beta_v) : v \in V(H)\},
\]
\[
E(H^{\uparrow \beta}) = \{\{v(\beta_v), w(\beta_w)\} : \{v, w\} \in E(H)\}.
\]

For $X \subseteq G^{\uparrow n}$ and $H \subseteq G$, let
\[
\text{Sub}_H(X) = \{H^{\uparrow \beta} : \beta \in [n]^{V(H)} \text{ such that } H^{\uparrow \beta} \subseteq X\},
\]
\[
\text{sub}_H(X) = |\text{Sub}_H(X)|.
\]

We refer to elements of $\text{Sub}_H(X)$ as H-subgraphs of X.

Definition 3 (The Colored G-Subgraph Isomorphism Problem).

For a graph G and $n \in \mathbb{N}$, let $\text{SUB}(G, n)$ be the problem, given a subgraph $X \subseteq G^{\uparrow n}$, of determining whether or not there exists $\alpha \in [n]^{V(G)}$ such that $G^{\uparrow \alpha} \subseteq X$. For complexity purposes, we regard $\text{SUB}(G, n)$ as a Boolean function $\{0, 1\}^{|E(G)| \cdot n^2} \to \{0, 1\}$ with variables $\{X_e\}_{e \in E(G^{\uparrow n})}$. We refer to $\text{SUB}(G) = \{\text{SUB}(G, n)\}_{n \in \mathbb{N}}$ as the colorful G-subgraph isomorphism problem.
Note the brute-force upper bound: \(\text{SUB}(G) \) is solvable by monotone depth-2 (OR \(\circ \) AND) formulas of size \(O(|E(G)| \cdot n^{|V(G)|}) \):

\[
\bigvee_{\alpha \in [n]^{|V(G)|}} \bigwedge \big\{ X_{\{v^i, w^j\}} \in E(G) \big\}.
\]

As we will see later on, there is a better upper bound (for monotone circuits of \(O(|V(G)|) \) depth) in terms of the tree-width of \(G \). In the next few lectures, we will show nearly matching lower bounds for bounded-depth circuits, as well as monotone circuits.

Two important special cases of the problem \(\text{SUB}(G) \) are when \(G = K_k \) (the “\(k \)-clique problem”) and \(G = P_k \) (the “distance-\(k \) connectivity problem”).

2 Relationship to \(\text{SUB}_{\text{uncolored}}(G) \)

We remark on the relationship between \(\text{SUB}(G) \) and its uncolored version, denoted \(\text{SUB}_{\text{uncolored}}(G) \). This is the problem: given a graph \(X \subseteq \mathbb{K}_n \) (i.e. a graph with \(V(X) \subseteq \{1, \ldots, n\} \)), determine whether or not \(X \) contains a subgraph isomorphic to \(G \). (Note that \(k\)-\text{CLIQUE} is precisely the problem \(\text{SUB}_{\text{uncolored}}(K_k) \).)

There is a well-known reduction from \(\text{SUB}_{\text{uncolored}}(G) \) to \(\text{SUB}(G) \).

Theorem 4 (“Color-Coding Technique”, Alon-Yuster-Zwick 1995). There is a quasi-linear size \(\text{AC}^0 \) reduction from \(\text{SUB}_{\text{uncolored}}(G) \) to \(\text{SUB}(G) \).

Proof Sketch. We are given an uncolored graph \(X \subseteq \mathbb{K}_n \) and wish to determine whether or not it contains a subgraph isomorphic to \(G \). For a function \(\varphi : [n] \to V(G) \), let \(X^\varphi \subseteq \mathcal{G}^n \) be the graph with

\[E(X^\varphi) = \{ \{v^i, w^j\} : \{v, w\} \in E(G) \text{ and } \{i, j\} \in E(X) \text{ and } \varphi(i) \neq \varphi(j) \}. \]

Suppose we have a family \(\Phi \) of functions \(\varphi : [n] \to V(G) \) with the property that, for every \(U \subseteq [n] \) with \(|U| = |V(G)| \), there exists \(\varphi \in \Phi \) with \(\varphi(U) = V(G) \). Such a family \(\Phi \) is called a \(k \)-perfect family of hash functions where \(k = |V(G)| \) and explicit constructions are known of size \(O_k(\log n) \) (the constant here is exponential in \(k \)).

The reduction from \(\text{SUB}_{\text{uncolored}}(G) \) to \(\text{SUB}(G) \) works as follows: For each \(\varphi \in \Phi \), test whether \(\text{sub}_G(X^\varphi) \geq 1 \). If \(\text{sub}_G(X^\varphi) \geq 1 \) for any \(\varphi \in \Phi \), then accept (i.e. conclude that \(X \) contain a subgraph isomorphic to \(G \)); otherwise, reject.

To see that this reduction is correct, note that if \(X \) does not contain a subgraph isomorphic to \(G \), then clearly \(\text{sub}_G(X^\varphi) = 0 \) for every function \(\varphi : [n] \to V(G) \). On the other hand, if \(X \) contains a subgraph \(G' \) isomorphic to \(G \), then for any \(\varphi \in \Phi \) with \(\varphi(V(G')) = V(G) \), we have \(\text{sub}_G(X^\varphi) \geq 1 \).

The fact that this reduction can be implemented by \(\text{AC}^0 \) circuits of size \(O(n \log n) \) was noted by Amano (2010).

In many cases, there is a trivial reduction in the opposite direction from \(\text{SUB}(G) \) to \(\text{SUB}_{\text{uncolored}}(G) \).

Definition 5. A graph \(G \) is a core if every homomorphism \(G \to G \) is one-to-one (and hence an automorphism).

For example, the complete graph \(K_k \) is a core.
Lemma 6. If G is a core and $X \subseteq G^{\uparrow n}$, then X contains a subgraph isomorphic to G if and only if $\text{sub}_G(X) \geq 1$.

Proof. In one direction, if $\text{sub}_G(X) \geq 1$ then clearly X contains a subgraph isomorphic to G. In the other direction, assume X contains a subgraph G' isomorphic to G. Let $\varphi : V(G') \to V(G)$ be an isomorphism. Let $\pi : V(G'^{\uparrow n}) \to V(G)$ be the homomorphism $v(i) \mapsto v$. Then $\pi \circ \varphi^{-1}$ is a homomorphism $G \to G'$ and, therefore, one-to-one (since G is a core). It follows that there exists an automorphism σ of G such that $\pi \circ \varphi^{-1} \circ \sigma : V(G) \to V(G)$ is the identity function. Then $G^{\uparrow (\alpha)} \subseteq X$ where $\alpha \in [n]^{V(G)}$ is given by $\alpha_v = \varphi^{-1}(\sigma(v))$. □

Corollary 7. If G is a core, then there is a linear-size AC^0 reduction (in fact, monotone projection) from $\text{SUB}_{\text{uncolored}}(G)$ to $\text{SUB}(G)$.

Proof. This reduction simply maps X regarded as an instance of $\text{SUB}(G, n)$ (i.e. a subgraph $G^{\uparrow n}$) to X regarded as an instance of $\text{SUB}_{\text{uncolored}}(G, |V(G)|, n)$ (i.e. a subgraph of $K_{|V(G)|, n}$). □

Theorem 4 and Corollary 7 show that $\text{SUB}(G)$ and $\text{SUB}_{\text{uncolored}}(G)$ are equivalent problems (up to quasi-linear AC^0 reductions) for cores G such as K_k. Henceforth, we shall focus almost entirely on the colored problem $\text{SUB}(G)$, which appears to be more well-structured and better behaved than the uncolored version.

3 Threshold Weightings

For the uncolored subgraph isomorphism problem $\text{SUB}_{\text{uncolored}}(G)$, there is a canonical choice of input distribution (i.e. random graph) with respect to which the corresponding Boolean function $\{0, 1\}^{\binom{n}{2}} \to \{0, 1\}$ is balanced (i.e. has expectation bounded away from 0 and 1). This is the Erdos-Renyi random graph $G(n, p)$ for an appropriate threshold value of p (see Example 15).

In the colored setting, we can identify a family of product distributions (what might be called “G-colored Erdos-Renyi random graphs”) with respect to $\text{SUB}(G)$ is balanced. This family is nicely indexed by a convex polytope of edge-weightings $E(G) \to [0, 2]$.

Definition 8. A threshold weighting on G is a function $\theta : E(G) \to \mathbb{R}_{\geq 0}$ such that

1. $\sum_{e \in E(H)} \theta(e) \leq |V(H)|$ for all $H \subseteq G$,
2. $\sum_{e \in E(G)} \theta(e) = |V(G)|$.

For $H \subseteq G$, we define

$$\Delta_{\theta}(H) := |V(H)| - \sum_{e \in E(H)} \theta(e).$$

Thus, condition (1) states that $\Delta_{\theta}(H) \geq 0$ for all $H \subseteq G$ and condition (2) states that $\Delta_{\theta}(G) = 0$.

We say that θ is strict if $\Delta_{\theta}(H) > 0$ for all $\emptyset \subset H \subseteq G$. (Note that θ is strict $\Rightarrow G$ is connected.)

Example 9.

1. Here is a threshold weighting on a particular 4-vertex graph:

![Diagram](image-url)
2. The set of threshold weightings on G is a polytope in $\mathbb{R}^{E(G)}$. In particular, if θ_1, θ_2 are threshold weightings, then so is every convex combination $\lambda \theta_1 + (1 - \lambda) \theta_2$ for $0 < \lambda < 1$.

3. If G is r-regular, then the constant function $\theta \equiv 2/r$ is a threshold weighting.

Exercise: If G is an r-regular expander, then $\Delta_2/2r(H) \geq \Omega(\min\{|V(H)|, |V(G)| - |V(H)|\})$.

4. More generally, the function $\theta(\{v, w\}) := \frac{1}{\deg(v)} + \frac{1}{\deg(w)}$ is a threshold weighting.

4 The Random Graph $X_{\theta} \subseteq G^\uparrow n$

Definition 10. For every threshold weighting θ on G, we define a random subgraph $X_{\theta,n} \subseteq G^\uparrow n$ (we write X_{θ} when n is understood from context) where, independently for all $\{v^{(i)}, w^{(j)}\} \in E(G^\uparrow n)$,

$$P[\{v^{(i)}, w^{(j)}\} \in E(X_{\theta})] = n^{-\theta(\{v, w\})}.$$

We will be interested in the average-case complexity of $\text{SUB}(G)$ on X_{θ}.

Definition 11. If $f = (f_n)$ is a sequence of Boolean functions $f_n : \{\text{subgraphs of } G^\uparrow n\} \to \{0, 1\}$, we say that “$f$ solves $\text{SUB}(G)$ in the average-case on X_{θ}” if

$$\lim_{n \to \infty} P[f_n(X_{\theta,n}) = 1 \iff \text{sub}_G(X_{\theta,n}) \geq 1] = 1.$$

Clearly, the worst-case complexity of $\text{SUB}(G)$ is lower-bounded by the maximum—over threshold weightings θ—of its average-case complexity with respect to X_{θ}. Our method for proving lower bounds on $\text{SUB}(G)$ will consist of two parts:

(i) For each threshold weighting θ, we characterize the average-case AC^0 circuit size of $\text{SUB}(G)$ on X_{θ} in terms of a combinatorial parameter $\kappa_{\theta}(G)$ (defined in the next lecture): we show a lower bound of $n^{\kappa_{\theta}(G) - o(1)}$, as well as an upper bound of $n^{2\kappa_{\theta}(G) + O(1)}$.

(ii) For every graph G, we show that there exists a threshold weighting θ such that $\kappa_{\theta}(G) = \Omega(\text{tw}(G)/\log \text{tw}(G))$ where $\text{tw}(G)$ is the tree-width of G. In special cases, such as $G = K_k$ or in general when G is an expander, we achieve optimal bound $\kappa_{\theta}(G) = \Omega(|V(G)|)$.

Together (i) and (ii) imply nearly tight lower bounds on the worst-case (really: worst average-case) AC^0 circuit size of of $\text{SUB}(G)$.

The upper and lower bounds in (i) rely on properties of the random graph X_{θ}. In particular, we require a good understanding of the subgraph counts $\text{sub}_H(X_{\theta})$ for $H \subseteq G$.

Lemma 12. For all $H \subseteq G$, we have $E[\text{sub}_H(X_{\theta})] = n^{\Delta_{\theta}(H)}$. In particular, $E[\text{sub}_G(X_{\theta})] = 1$.

Proof. Direct from definitions.

In the case where θ is strict, we can say a lot more.

Theorem 13. If θ is strict, then the following hold:
1. \(\text{sub}_G(X_\theta) \) is asymptotically Poisson(1). That is, for every \(k \in \mathbb{N} \),

\[
\lim_{n \to \infty} P \left[\text{sub}_G(X_\theta) = k \right] = \frac{1}{ek!}.
\]

In particular, \(\lim_{n \to \infty} P[\text{sub}_G(X_\theta) \geq 1] = 1 - \frac{1}{e} \) (i.e. \(\text{SUB}(G) \) is balanced with respect to \(X_\theta \), justifying terminology “threshold weighting”).

2. For all \(\emptyset \subset H \subset G \),

\[
P \left[\text{sub}_H(X_\theta) < \frac{1}{2} n \Delta_\theta(H) \right] \leq \exp \left(-\Omega(n^c) \right),
\]

\[
P \left[\text{sub}_H(X_\theta) > \frac{3}{2} n \Delta_\theta(H) \right] \leq \exp \left(-\Omega(n^c) \right),
\]

for a constant \(c > 0 \) depending on \(\theta \) and \(H \).

Time permitting, we will see elements of the proof of Theorem 13 in a future lecture.

5 More Examples of Threshold Weightings

Example 14 (Threshold weightings from Markov chains). If \(M \in V(G) \times V(G) \rightarrow [0,1] \) is the transition matrix for any Markov chain on \(G \), that is,

1. \(\sum_w M(v,w) = 1 \) for every \(v \in V(G) \) and
2. \(M(v,w) > 0 \Rightarrow \{v,w\} \in E(G) \).

Then

\[
\theta(\{v,w\}) := M(v,w) + M(w,v)
\]

is a threshold weighting for \(G \). In this case, we have

\[
\Delta_\theta(H) = \sum_{(v,w) : v \in V(H) \text{ and } \{v,w\} \in E(G) \setminus E(H)} M(v,w),
\]

that is, \(\Delta_\theta(H) \) is equal to the amount of \(M \)-flow that leaves \(V(H) \) via edges in \(E(G) \setminus E(H) \). This is derived as follows:

\[
\Delta_M(H) = |V(H)| - \sum_{\{v,w\} \in E(H)} \left(M(v,w) + M(w,v) \right)
\]

\[
= \sum_{v \in V(H)} \left(1 - \sum_{w : \{v,w\} \in E(H)} M(v,w) \right)
\]

\[
= \sum_{v \in V(H)} \left(\sum_{w : \{v,w\} \notin E(H)} M(v,w) \right)
\]

\[
= \sum_{(v,w) : v \in V(H) \text{ and } \{v,w\} \notin E(H)} M(v,w).
\]
Example 15. The *threshold exponent* of G is defined by

$$\tau(G) := \min_{H \subseteq G} \frac{|V(H)|}{|E(H)|}.$$

This constant characterizes the appearance of subgraphs isomorphic to G in the Erdos-Renyi random graph $G(n,p)$: for $p(n) = n^{-\tau(G)}$, the probability that $G(n,p)$ contains a subgraph isomorphic to G is bounded away from 0 and 1 (while this probability tends to 0 or 1 for $p \ll n^{-\tau(G)}$ and $p \gg n^{-\tau(G)}$ respectively). The Erdos-Renyi random graph $G(n,n^{-\tau(G)})$ is a canonical input distribution for studying the average-case complexity of $\text{SUB}_{\text{uncolored}}(G)$.

The average-case analysis of $\text{SUB}_{\text{uncolored}}(G)$ on $G(n,n^{-\theta(G)})$ is essentially equivalent to the average-case analysis of $\text{SUB}(G)$ on X_θ for the threshold weighting $\theta : E(G) \to [0,2]$ defined by

$$\theta(\{v,w\}) := \begin{cases} \tau(G) & \text{if } \{v,w\} \in E(H) \text{ for any } H \subseteq G \text{ with } \tau(G) = \frac{|V(H)|}{|E(H)|}, \\ 0 & \text{otherwise.} \end{cases}$$

All of the lower/upper bounds we show for average-case $\text{SUB}(G)$ on X_θ carry over to $\text{SUB}_{\text{uncolored}}(G)$ on $G(n,n^{-\theta(G)})$ for this particular setting of θ. (This is not by a formal reduction; I am only claiming that the calculations work out similarly.) We get more powerful results by working with the colored version $\text{SUB}(G)$, thanks to the freedom to choose optimal θ. For this reason, going forward we will focus entirely on the average-case complexity of $\text{SUB}(G)$ on X_θ and leave the uncolored setting as a special case.

Remark 16. G is *balanced* if $\tau(G) = |V(G)|/|E(G)|$, and G is *strictly balanced* if $\tau(G) < |V(H)|/|E(H)|$ for all $H \subset G$. If G is balanced, then the above-defined θ is identically $\tau(G)$. If G is strictly balanced, then this θ is strict.