ANNOUNCEMENTS

Final reminder to fill your course evaluation!

At end of lecture today, pick up PSET #4 and any unclaimed psets or midterms

No more tutorials. Continue to ask questions on Piazza!

Office hours will continue Thursdays 4-5:30pm on April 5 and 12

Final Exam: Wednesday, April 18, 9am-12pm, EX 200
Marking Scheme

- 25% for each midterm + 35% final exam
- Final exam out of 100, plus 8 extra credit points (max possible score of 108)
- Will count 2nd midterm as +10 points for everyone. Will scale up final exam if necessary to ensure average is at least 70.
- Problem sets (15%): worth 3.25% each, plus 2% · max pset grade
- Extra credit problems: worth up to 3% – exact formula to be determined
NOT on the Final Exam

- Won’t ask you to write a deduction. However, you should know the definitions of deduction, (PC) rule and (Q1) axiom. (Appendix not provided.)
- No question about Henkin axioms or details of the proof of the soundness/completeness/compactness theorems.
- You don’t need to memorize the axioms of Robinson Arithmetic N.
- You don’t need the memorize the precise definition of Godel numbering ($\text{"}t\text{"}$ and $\text{"}\phi\text{"}$), but you should know the basic idea (for instance, $\text{"}\alpha \lor \beta\text{"} = \langle\text{some number, }\text{"}\alpha\text{"}, \text{"}\beta\text{"}\rangle = 2^{\text{some number}} + 13^{\text{"}\alpha\text{"}} + 15^{\text{"}\beta\text{"}} + 1$).
- Rosser’s Theorem (N is not recursively completable) and 2nd Incompleteness Theorem not on the exam.
ON the Final Exam

• ~50% of exam on Chapters 1–4. One question involving the Compactness Theorem (worth ~10%), relatively easy compared with Midterm 2

• ~50% of exam on Chapter 5 and 6 (the parts we covered in detail)

• Knowledge of Ehrenfeucht-Fraisse Games will help with extra credit problem (8%).

• You should know the statement of Self-Reference Lemma, 1st Incompleteness Theorem and Tarski’s theorem. (I won’t ask you to recite the proof, but it’s good if you understand!)

• Be able to express yourself in first-order logic. (e.g. write a Δ-formula defining PRIME, or write the axioms for equivalence relations, or write a sentence that true in a particular \mathcal{L}-structure \mathfrak{A} and false in another \mathcal{L}-structure \mathfrak{B})

• Know the key definitions from Chapter 1-3: free variables, substitutions, def. of \models and \vdash, statements of soundness/completeness/compactness theorems.
ON the Final Exam

• Know the definitions of isomorphism (page 27) and elementary equivalence.

• Be able to classify terms/formulas/numbers according to our notation: ⌜t⌝, ⌜ϕ⌝, ⟨a₁, . . . , aₖ⟩ are numbers: ⌜a⌝, ⌜ϕ⌝ are terms, Deductionₙ(⌜a⌝, ⌜b⌝) is a formula.

• Know the sequence-coding function ⟨a₁, . . . , aₖ⟩ = ∏ₖᵢ=₁(pᵢ)ᵃᵢ₊₁.

• Know the definition of Σ, Π, Δ-definable and representable and recursive/complete/consistent set of axioms.

• Understand the concept of “construction sequences” as a means of building Δ-formulas.

• Know that Deductionₙ is Δ-definable and Thmₙ is Σ-definable (and know what these sets are, though not necessarily the exact formulas which define them).
Key Results in Chapters 5 and 6

• N proves every Σ-sentence which is true in \mathbb{N}

• Δ-definable \Rightarrow representable \Rightarrow Σ-definable

• A is representable \iff membership in A is computable by an algorithm (e.g., Turing machine) in finite time.

 You should understand the \Rightarrow direction: Suppose $\varphi(x)$ represents $A \subseteq \mathbb{N}$. To determine whether or not $a \in A$, start enumerating the (infinite) list of deductions-from-N until finding a deduction which shows that $N \vdash \varphi(a)$ or $N \vdash \neg \varphi(a)$.

• If A is recursive (i.e. if $\{\ulcorner \alpha \urcorner : \alpha \in A\}$ is representable), then the set $\text{Thm}_A := \{\ulcorner \varphi \urcorner : A \models \varphi\}$ is Σ-definable.

• Self-reference lemma, 1st incompleteness theorem, Tarski’s undefinability theorem
Lemma 6.2.2 (Self-Reference Lemma). If $\beta(x)$ is an \mathcal{L}_{NT}-formula with only x free, then there is a sentence θ such that $N \vdash \theta \leftrightarrow \beta(\overline{\theta})$.
Lemma 6.2.2 (Self-Reference Lemma). If $\beta(x)$ is an \mathcal{L}_{NT}-formula with only x free, then there is a sentence θ such that $N \vdash \theta \iff \beta(\overline{\theta})$.

Theorem 6.3.6 (Gödel’s First Incompleteness Theorem, 1931). Suppose that A is a consistent and recursive set of axioms in the language \mathcal{L}_{NT}. Then there is a sentence θ such that $\mathfrak{N} \models \theta$ but $A \nvdash \theta$.

Idea. If $A \nvdash N$, we’re done. If $A \vdash N$, we consider a sentence θ such that

$$N \vdash \theta \iff \neg Thm_A(\overline{\theta}).$$

This forces $\mathfrak{N} \models \theta$ and $A \nvdash \theta$ (otherwise we get a contradiction).
Lemma 6.2.2 (Self-Reference Lemma). If $\beta(x)$ is an \mathcal{L}_{NT}-formula with only x free, then there is a sentence θ such that $\mathcal{N} \vdash \theta \leftrightarrow \beta(\overline{\theta^n})$.

Theorem 6.3.6 (Gödel’s First Incompleteness Theorem, 1931). Suppose that A is a consistent and recursive set of axioms in the language \mathcal{L}_{NT}. Then there is a sentence θ such that $\mathcal{N} \models \theta$ but $A \nvdash \theta$.

Idea. If $A \nvdash \mathcal{N}$, we’re done. If $A \vdash \mathcal{N}$, we consider a sentence θ such that

$$\mathcal{N} \vdash \theta \leftrightarrow \neg \text{Thm}_A(\overline{\theta^n}).$$

This forces $\mathcal{N} \models \theta$ and $A \nvdash \theta$ (otherwise we get a contradiction).

Theorem 6.3.10 (Tarski’s Undefinability Theorem, 1936). The set $\{\overline{\varphi^n} : \mathcal{N} \models \varphi\}$ of Gödel numbers of formulas true in \mathcal{N} is not definable.

Idea. Toward a contradiction, assume $\beta(x)$ defines $\{\overline{\varphi^n} : \mathcal{N} \models \varphi\}$. Consider the sentence θ such that $\mathcal{N} \vdash \theta \leftrightarrow \neg \beta(\overline{\theta^n})$. Contradiction is immediate, as

$$\mathcal{N} \models \theta \iff \mathcal{N} \models \neg \beta(\overline{\theta^n}) \iff \mathcal{N} \not\models \theta.$$
Theorem 6.4.5 (Rosser’s Theorem). If A is a set of \mathcal{L}_{NT}-axioms that is recursive, consistent, and extends N, then A is incomplete.

Idea. Consider a sentence θ such that

$$
N \vdash \theta \iff (\forall x) \left[\text{Deduction}_A(x, \text{⌜}\theta\text{⌝}) \rightarrow (\exists y < x) \text{Deduction}_A(y, \text{⌜}\neg\theta\text{⌝}) \right].$

Can show that $A \not\vdash \theta$ and $A \not\vdash \neg\theta$. (A contradiction ensues if we assume $A \vdash \theta$ or $A \vdash \neg\theta$.)
Theorem 6.4.5 (Rosser’s Theorem). If A is a set of \mathcal{L}_{NT}-axioms that is recursive, consistent, and extends N, then A is incomplete.

Idea. Consider a sentence θ such that

$$N \vdash \theta \iff (\forall x)[Deduction_A(x, \overline{\theta}) \rightarrow (\exists y < x)\ Deduction_A(y, \overline{\neg \theta})].$$

Can show that $A \not\vdash \theta$ and $A \not\vdash \neg \theta$. (A contradiction ensues if we assume $A \vdash \theta$ or $A \vdash \neg \theta$.)

Obs. Either $\mathfrak{M} \models \theta$ or $\mathfrak{M} \models \neg \theta$. In either case, we get a sentence which is true in \mathfrak{M} and not provable from A. Thus, Rosser’s Theorem \Rightarrow 1st Incompleteness Theorem.
Peano Arithmetic

Definition. The axioms of *Peano Arithmetic* (1889), denoted PA, are the eleven axioms of Robinson arithmetic together with axioms

$$
Induction_\varphi \equiv \left[\varphi(0) \land (\forall x)[\varphi(x) \rightarrow \varphi(Sx)] \right] \rightarrow (\forall x)\varphi(x)
$$

for each \mathcal{L}_{NT}-formula $\varphi(x)$ with one free variable.
Peano Arithmetic

Definition. The axioms of *Peano Arithmetic* (1889), denoted PA, are the eleven axioms of Robinson arithmetic together with axioms

$$\text{Induction}_\varphi \equiv \left[\varphi(0) \land (\forall x)[\varphi(x) \rightarrow \varphi(Sx)] \right] \rightarrow (\forall x)\varphi(x)$$

for each \mathcal{L}_{NT}-formula $\varphi(x)$ with one free variable.

- Clearly, $\mathfrak{M} \models PA$ (since $\mathfrak{M} \models \text{Induction}_\varphi$ for each $\varphi(x)$). Therefore, PA is consistent.
Peano Arithmetic

Definition. The axioms of *Peano Arithmetic* (1889), denoted PA, are the eleven axioms of Robinson arithmetic together with axioms

$$Induction_\varphi : \equiv \left[\varphi(0) \land (\forall x)[\varphi(x) \rightarrow \varphi(Sx)] \right] \rightarrow (\forall x)\varphi(x)$$

for each \mathcal{L}_{NT}-formula $\varphi(x)$ with one free variable.

- Clearly, $\mathfrak{N} \models PA$ (since $\mathfrak{N} \models Induction_\varphi$ for each $\varphi(x)$). Therefore, PA is consistent.

- PA is easily seen to be recursive: there is a simple algorithm to decide membership in $\{ \{\alpha\} : \alpha \in PA \}$. By 1st Incompleteness Theorem, there exists a sentence θ such that $\mathfrak{N} \models \theta$ but $PA \not\vdash \theta$. (In particular, PA is not complete.)
Peano Arithmetic

Definition. The axioms of Peano Arithmetic (1889), denoted PA, are the eleven axioms of Robinson arithmetic together with axioms

\[\text{Induction}_\varphi : \equiv \left[\varphi(0) \land (\forall x)[\varphi(x) \rightarrow \varphi(Sx)] \right] \rightarrow (\forall x)\varphi(x) \]

for each \mathcal{L}_{NT}-formula $\varphi(x)$ with one free variable.

- Clearly, $\mathbb{N} \models PA$ (since $\mathbb{N} \models \text{Induction}_\varphi$ for each $\varphi(x)$). Therefore, PA is consistent.

- PA is easily seen to be recursive: there is a simple algorithm to decide membership in $\{\ulcorner \alpha \urcorner : \alpha \in PA\}$. By 1st Incompleteness Theorem, there exists a sentence θ such that $\mathbb{N} \models \theta$ but $PA \not\vdash \theta$. (In particular, PA is not complete.)

- Whereas Robinson arithmetic N is very weak (it doesn’t prove $(\forall x)(\forall y)(x + y = y + x)$), Peano arithmetic PA is quite powerful – it proves any result you have seen in MAT315. (It is even claimed that $PA \vdash$ Fermat’s Last Theorem.)
2ND INCOMPLETENESS THEOREM

The sentence Con_A:

Let A be a recursive set of \mathcal{L}_{NT}-sentences.

Recall that the set $\text{THM}_A := \{ \ulcorner \varphi \urcorner : A \vdash \varphi \}$ is Σ-definable. Fix a Σ-formula $\text{Thm}_A(x)$ which defines THM_A.

Let Con_A be the sentence

$$\text{Con}_A \equiv \neg \text{Thm}_A(\ulcorner \bot \urcorner).$$

This sentence expresses “A is consistent”: note that A is consistent if, and only if, $\mathfrak{M} \models \text{Con}_A$.
2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)
If A is any consistent, recursive set of \mathcal{L}_{NT}-sentences which extends PA, then $A \nvdash Con_A$.
2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)
If A is any consistent, recursive set of \mathcal{L}_{NT}-sentences which extends PA, then $A \nvdash \text{Con}_A$.

- PA itself is consistent and recursive. Therefore, $\text{PA} \nvdash \text{Con}_{\text{PA}}$.
2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)
If A is any consistent, recursive set of \mathcal{L}_{NT}-sentences which extends PA, then $A \not\models \text{Con}_A$.

- PA itself is consistent and recursive. Therefore, $PA \not\models \text{Con}_PA$.

- How do you and I know that PA is consistent? We can prove \mathfrak{M} is a model of Con_PA using the usual axioms of ZFC (Zermelo-Frankl set theory with choice). Therefore, $ZFC \models \text{Con}_PA$ (interpreting the sentence Con_PA in the language of set theory).

 However, $ZFC \not\models \text{Con}_{ZFC}$.

2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)

If A *is any consistent, recursive set of* \mathcal{L}_{NT}*-sentences which extends* PA, *then* $A \nvdash Con_A$.

- PA itself is consistent and recursive. Therefore, $PA \vdash Con_{PA}$.

- How do you and I know that PA is consistent? We can prove \mathcal{M} is a model of Con_{PA} using the usual axioms of ZFC (Zermelo-Frankl set theory with choice). Therefore, $ZFC \vdash Con_{PA}$ (interpreting the sentence Con_{PA} in the language of set theory).

However, $ZFC \nvdash Con_{ZFC}$.

- 2nd Incompleteness Theorem answered a question asked by David Hilbert in 1900 by showing that no “sufficiently powerful formal system” (including set theory ZFC) can prove its own consistency.
2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)
If A is any consistent, recursive set of \mathcal{L}_{NT}-sentences which extends PA, then $A \nvdash \text{Con}_A$.

- Alternative phrasing of 2nd Incompleteness Theorem: If A is recursive extension of PA, then A is consistent $\iff A \nvdash \text{Con}_A$.

(If A is inconsistent, then $A \vdash \text{Con}_A$ since A proves everything.)
2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)
If A is any consistent, recursive set of \mathcal{L}_{NT}-sentences which extends PA, then $A \not\vdash Con_A$.

- Alternative phrasing of 2nd Incompleteness Theorem: If A is recursive extension of PA, then A is consistent $\iff A \not\vdash Con_A$.

 (If A is inconsistent, then $A \vdash Con_A$ since A proves everything.)

- Since $PA \not\vdash Con_{PA}$, it follows that $PA \cup \{\neg Con_{PA}\}$ is consistent. (Added in slides: This is because, if we assume that $PA \cup \{\neg Con_{PA}\} \vdash \bot$, then $PA \vdash \neg Con_{PA} \rightarrow \bot$ by the Deduction Theorem; it would then follow that $PA \vdash Con_{PA}$ by the (PC) rule, but this contradicts the fact that $PA \not\vdash Con_{PA}$.) Therefore, there exists a model \mathcal{M} of $PA \cup \{\neg Con_{PA}\}$. (This model looks a lot like \mathcal{N} — for example, addition $+^\mathcal{M}$ is commutative. However, $Th(\mathcal{M}) \neq Th(\mathcal{N})$.)
2nd Incompleteness Theorem

Theorem 6.6.3 (Godel’s 2nd Incompleteness Theorem)
If A is any consistent, recursive set of \mathcal{L}_{NT}-sentences which extends PA, then $A \not\vdash Con_A$.

- Alternative phrasing of 2nd Incompleteness Theorem: If A is recursive extension of PA, then A is consistent $\iff A \not\vdash Con_A$.

 (If A is inconsistent, then $A \vdash Con_A$ since A proves everything.)

- Since $PA \not\vdash Con_{PA}$, it follows that $PA \cup \{\neg Con_{PA}\}$ is consistent. Therefore, there exists a model \mathfrak{M} of $PA \cup \{\neg Con_{PA}\}$. (This model looks a lot like \mathfrak{N} — for example, addition $+_{\mathfrak{M}}$ is commutative. However, $Th(\mathfrak{M}) \neq Th(\mathfrak{N})$.)

- Since PA is consistent, why not take Con_{PA} as an additional axiom? Let $PA' := PA \cup \{Con_{PA}\}$. Then $PA' \vdash Con_{PA}$, but $PA' \not\vdash Con_{PA'}$. So we are left with the same problem.
Hilbert-Bernays Derivability Conditions

Lemma. PA satisfies the following “derivability conditions” for all formulas α and β:

(D1) If $PA \vdash \alpha$, then $PA \vdash Thm_{PA}(\overline{\alpha})$.

If PA proves α, then PA proves “PA proves α”.
Hilbert-Bernays Derivability Conditions

Lemma. \(PA\) satisfies the following “derivability conditions” for all formulas \(\alpha\) and \(\beta\):

(D1) If \(PA \vdash \alpha\), then \(PA \vdash Thm_{PA}(\overline{\overline{\alpha}})\).

If \(PA\) proves \(\alpha\), then \(PA\) proves “\(PA\) proves \(\alpha\)”.

(D2) \(PA \vdash Thm_{PA}(\overline{\overline{\alpha}}) \rightarrow Thm_{PA}(\overline{\overline{Thm_{PA}(\overline{\overline{\alpha}})}})\).

\(PA\) proves “if \(PA\) proves \(\alpha\), then \(PA\) proves “\(PA\) proves \(\alpha\)”.”
Hilbert-Bernays Derivability Conditions

Lemma. PA satisfies the following “derivability conditions” for all formulas α and β:

(D1) If $PA \vdash \alpha$, then $PA \vdash Thm_{PA}(\overline{\alpha})$.

If PA proves α, then PA proves “PA proves α”.

(D2) $PA \vdash Thm_{PA}(\overline{\alpha}) \rightarrow Thm_{PA}(\overline{\text{Thm}_{PA}(\overline{\alpha})})$.

PA proves “if PA proves α, then PA proves “PA proves $\alpha””.

(D3) $PA \vdash [Thm_{PA}(\overline{\alpha}) \land Thm_{PA}(\overline{\alpha \rightarrow \beta})] \rightarrow Thm_{PA}(\overline{\beta})$.

PA proves “if PA proves α and PA proves $\alpha \rightarrow \beta$, then PA proves β”.
Hilbert-Bernays Derivability Conditions

Lemma. *PA* satisfies the following “derivability conditions” for all formulas \(\alpha \) and \(\beta \):

1. (D1) If \(PA \vdash \alpha \), then \(PA \vdash \text{Thm}_{PA}(\alpha) \).

 If \(PA \) proves \(\alpha \), then \(PA \) proves “\(PA \) proves \(\alpha \)”.

2. (D2) \(\vdash \text{Thm}_{PA}(\alpha) \rightarrow \text{Thm}_{PA}(\text{Thm}_{PA}(\alpha)) \).

 \(PA \) proves “if \(PA \) proves \(\alpha \), then \(PA \) proves “\(PA \) proves \(\alpha \)””.

3. (D3) \(\vdash \text{Thm}_{PA}(\alpha) \wedge \text{Thm}_{PA}(\alpha \rightarrow \beta) \rightarrow \text{Thm}_{PA}(\beta) \).

 \(PA \) proves “if \(PA \) proves \(\alpha \) and \(PA \) proves \(\alpha \rightarrow \beta \), then \(PA \) proves \(\beta \)”.

Moreover, if \(A \) is a recursive extension of \(PA \), then \(A \) satisfies derivability conditions (D1)–(D3) with respect to \(\text{Thm}_A(x) \).
Proof of 2nd Incompleteness Theorem. Let A be a consistent, recursive extension of PA. Let θ be a sentence such that

\[
(*) \quad N \models \theta \leftrightarrow \neg \text{Thm}_A(\overline{\overline{\theta}}).
\]

By proof of 1st Incompleteness Theorem, we know that $A \nvdash \theta$.

CLAIM: $A \vdash Con_A \rightarrow \theta$. (It follows that $A \nvdash Con_A$.)
Proof of 2nd Incompleteness Theorem. Let \(A \) be a consistent, recursive extension of \(PA \). Let \(\theta \) be a sentence such that

\[
(*) \quad N \vdash \theta \iff \neg \text{Thm}_A(\overline{\overline{\theta}}).
\]

By proof of 1st Incompleteness Theorem, we know that \(A \not\vdash \theta \).

CLAIM: \(A \vdash \text{Con}_A \rightarrow \theta \). (It follows that \(A \not\vdash \text{Con}_A \).)

PROOF OF CLAIM: By (\(* \)), we have \(A \vdash \text{Thm}_A(\overline{\overline{\theta}}) \rightarrow \neg \theta \).

(D1): \(A \vdash \text{Thm}_A(\overline{\overline{\text{Thm}_A(\overline{\overline{\theta}})}} \rightarrow \neg \theta) \)

(D2): \(A \vdash \text{Thm}_A(\overline{\overline{\theta}}) \rightarrow \text{Thm}_A(\overline{\overline{\text{Thm}_A(\overline{\overline{\theta}})}}) \).

(D3): \(A \vdash (\overline{\overline{\text{Thm}_A(\overline{\overline{\text{Thm}_A(\overline{\overline{\theta}})}})}} \land \overline{\overline{\text{Thm}_A(\overline{\overline{\text{Thm}_A(\overline{\overline{\theta}})}} \rightarrow \neg \theta)}}) \rightarrow \text{Thm}_A(\overline{\overline{\neg \theta}}) \).

By (PC) rule, \(A \vdash \text{Thm}_A(\overline{\overline{\theta}}) \rightarrow \text{Thm}_A(\overline{\overline{\neg \theta}}) \).

Next step: \(A \vdash \text{Thm}_A(\overline{\overline{\theta}}) \rightarrow \text{Thm}_A(\overline{\overline{\bot}}) \), hence \(A \vdash \text{Con}_A \rightarrow \neg \text{Thm}_A(\overline{\overline{\theta}}) \).

By (\(* \)) and (PC) rule: \(A \vdash \text{Con}_A \rightarrow \theta \). Q.E.D.
Complete, Consistent, Recursive Theories

The 1st Incompleteness Theorem implies that $Th(\mathcal{M})$ has no complete, consistent, recursive axiomatization.

The same is true of any theory that “interprets” $Th(\mathcal{M})$, such as models of ZFC (set theory).
Complete, Consistent, Recursive Theories

The 1st Incompleteness Theorem implies that $Th(\mathbb{N})$ has no complete, consistent, recursive axiomatization.

The same is true of any theory that “interprets” $Th(\mathbb{N})$, such as models of ZFC (set theory).

In contrast, there are beautiful examples of complete, consistent, recursive theories:

- $Th(\mathbb{N}, 0, 1, +)$ (Presburger Arithmetic)
- $Th(\mathbb{R}, 0, 1, +, \cdot, <)$ (the theory of real closed fields)
- Euclidean Geometry: the theory $Th(\mathbb{R}^2, \text{Between}, \text{Congruent})$ where

 \[
 \text{Between} := \{(a, b, c) \in (\mathbb{R}^2)^3 : b \in ac\}, \\
 \text{Congruent} := \{(a, b, c, d) \in (\mathbb{R}^2)^4 : |ab| = |cd|\}.
 \]

Here ab denotes the line segment between points $a, b \in \mathbb{R}^2$, and $|ab|$ is the length of ab. (See Tarski’s axioms.)