Gödel Numbers of Terms and Formulas

We assign a unique number to each symbol in \mathcal{L}_{NT} as follows:

\[
\begin{align*}
\neg & \quad 1 \\
\lor & \quad 3 \\
\forall & \quad 5 \\
= & \quad 7 \\
0 & \quad 9 \\
S & \quad 11 \\
+ & \quad 13 \\
\cdot & \quad 15 \\
E & \quad 17 \\
< & \quad 19 \\
(& \quad 21 \\
) & \quad 23 \\
v_i & \quad 2i
\end{align*}
\]

Suppose $s \equiv s_1 \ldots s_n$ is a string of symbols, which constituting a well-formed term or formula of \mathcal{L}_{NT}.

Naively, we could encode s by the number $\langle \#(s_1), \ldots, \#(s_n) \rangle$ where $\#(s_i)$ is the number corresponding to the symbol s_i.

However, it much better to encode s according to the inductive type of terms and formulas.
Def 5.7.1. For each term t and formula φ, the Gödel numbers $\ulcorner t \urcorner$ and $\ulcorner \varphi \urcorner$ are defined as follows:

\[-\alpha = \langle 1, \ulcorner \alpha \urcorner \rangle \]
\[(\alpha \lor \beta) = \langle 3, \ulcorner \alpha \urcorner, \ulcorner \beta \urcorner \rangle \]
\[(\forall v_i)(\alpha) = \langle 5, \ulcorner v_i \urcorner, \ulcorner \alpha \urcorner \rangle \]
\[= t_1 t_2 = \langle 7, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \]
\[0 = \langle 9 \rangle \]
\[S t = \langle 11, \ulcorner t \urcorner \rangle \]
\[+ t_1 t_2 = \langle 13, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \]
\[\cdot t_1 t_2 = \langle 15, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \]
\[E t_1 t_2 = \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \]
\[< t_1 t_2 = \langle 19, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \]
\[v_i = \langle 2i \rangle. \]
Def 5.7.1. For each term \(t \) and formula \(\varphi \), the Gödel numbers \(\ulcorner t \urcorner \) and \(\ulcorner \varphi \urcorner \) are defined as follows:

\[
\begin{align*}
\ulcorner \neg \alpha \urcorner &= \langle 1, \ulcorner \alpha \urcorner \rangle \\
\ulcorner (\alpha \lor \beta) \urcorner &= \langle 3, \ulcorner \alpha \urcorner, \ulcorner \beta \urcorner \rangle \\
\ulcorner (\forall v_i)(\alpha) \urcorner &= \langle 5, \ulcorner v_i \urcorner, \ulcorner \alpha \urcorner \rangle \\
\ulcorner t_1 t_2 \urcorner &= \langle 7, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \\
\ulcorner 0 \urcorner &= \langle 9 \rangle \\
\ulcorner St \urcorner &= \langle 11, \ulcorner t \urcorner \rangle \\
\ulcorner + t_1 t_2 \urcorner &= \langle 13, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \\
\ulcorner \cdot t_1 t_2 \urcorner &= \langle 15, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \\
\ulcorner Et_1 t_2 \urcorner &= \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \\
\ulcorner < t_1 t_2 \urcorner &= \langle 19, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle \\
\ulcorner v_i \urcorner &= \langle 2i \rangle.
\end{align*}
\]

Obs. \(\ulcorner t \urcorner \) and \(\ulcorner \varphi \urcorner \) are never divisible by 7. (Why?)
Def 5.7.1. For each term t and formula φ, the Gödel numbers $\ulcorner t \urcorner$ and $\ulcorner \varphi \urcorner$ are defined as follows:

- $\ulcorner \neg \alpha \urcorner = \langle 1, \ulcorner \alpha \urcorner \rangle$
- $\ulcorner (\alpha \lor \beta) \urcorner = \langle 3, \ulcorner \alpha \urcorner, \ulcorner \beta \urcorner \rangle$
- $\ulcorner (\forall v_i)(\alpha) \urcorner = \langle 5, \ulcorner v_i \urcorner, \ulcorner \alpha \urcorner \rangle$
- $\ulcorner = t_1 t_2 \urcorner = \langle 7, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$
- $\ulcorner 0 \urcorner = \langle 9 \rangle$
- $\ulcorner S t \urcorner = \langle 11, \ulcorner t \urcorner \rangle$

- $\ulcorner + t_1 t_2 \urcorner = \langle 13, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$
- $\ulcorner \cdot t_1 t_2 \urcorner = \langle 15, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$
- $\ulcorner E t_1 t_2 \urcorner = \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$
- $\ulcorner < t_1 t_2 \urcorner = \langle 19, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$
- $\ulcorner v_i \urcorner = \langle 2i \rangle$.

Example. $\ulcorner = 0 S 0 \urcorner = \langle 7, \ulcorner 0 \urcorner, \ulcorner S 0 \urcorner \rangle$

- $= \langle 7, \langle 9 \rangle, \langle 11, \langle 9 \rangle \rangle \rangle$
- $= \langle 7, 2^{10}, \langle 11, 2^{10} \rangle \rangle = 2^8 3^{1025} 5^{(2^{123^{1025}} + 1)}$.

Notice how fast $\ulcorner S S S S S 0 \urcorner$ grows:

$\ulcorner S S S S S 0 \urcorner = \langle 11, \langle 11, \langle 11, \langle 11, \langle 9 \rangle \rangle \rangle \rangle \rangle = 2^{123^{2^{123^{2^{123^{2^{123^{10}}}}}}}}$.
Next Steps (Section 5.8)

Δ-definability of sets

\[\text{TERTMS} := \{\lbrack t \rbrack: \text{terms } t\} = \{a \in \mathbb{N} : a = \lbrack t \rbrack \text{ for some term } t\},\]

\[\text{FORMULAS} := \{\lbrack \varphi \rbrack: \text{formulas } \varphi\} = \{a \in \mathbb{N} : a = \lbrack \varphi \rbrack \text{ for some formula } \varphi\}.\]
}\text{Definition of \textbf{Terms}} = \{ \neg t \downarrow : t \text{ is a term} \}

\begin{center}
\begin{tabular}{|l|}
\hline
\(\neg t\downarrow = \langle 1, \neg t \rangle\) & \(= t_1 t_2 \downarrow = \langle 7, t_1 \downarrow, t_2 \downarrow \rangle\) & \(+ t_1 t_2 \downarrow = \langle 13, t_1 \downarrow, t_2 \downarrow \rangle\) & \(< t_1 t_2 \downarrow = \langle 19, t_1 \downarrow, t_2 \downarrow \rangle\) \\
\(\alpha \lor \beta \downarrow = \langle 3, \alpha \downarrow, \beta \downarrow \rangle\) & \(0 \downarrow = \langle 9 \rangle\) & \(\cdot t_1 t_2 \downarrow = \langle 15, t_1 \downarrow, t_2 \downarrow \rangle\) & \(v_i \downarrow = \langle 2i \rangle\) \\
\(\forall v_i (\alpha) \downarrow = \langle 5, \forall v_i \downarrow, \alpha \downarrow \rangle\) & \(St \downarrow = \langle 11, t \downarrow \rangle\) & \(Et_1 t_2 \downarrow = \langle 17, t_1 \downarrow, t_2 \downarrow \rangle\) & \hline
\end{tabular}
\end{center}
Δ-Definition of Terms = \{\text{\textasciitilde}t \mid t \text{ is a term}\}

\text{\textasciitilde}\alpha \rangle = \langle 1, \alpha \rangle	\text{\textasciitilde}t_{1}t_{2} \rangle = \langle 7, \text{\textasciitilde}t_{1}, \text{\textasciitilde}t_{2} \rangle	\text{\textasciitilde}+t_{1}t_{2} \rangle = \langle 13, \text{\textasciitilde}t_{1}, \text{\textasciitilde}t_{2} \rangle	\text{\textasciitilde}<t_{1}t_{2} \rangle = \langle 19, \text{\textasciitilde}t_{1}, \text{\textasciitilde}t_{2} \rangle
\text{\textasciitilde}(\alpha \lor \beta) \rangle = \langle 3, \text{\textasciitilde}\alpha, \text{\textasciitilde}\beta \rangle	\text{\textasciitilde}0 \rangle = \langle 9 \rangle	\text{\textasciitilde}t_{1}t_{2} \rangle = \langle 15, \text{\textasciitilde}t_{1}, \text{\textasciitilde}t_{2} \rangle	\text{\textasciitilde}v_{i} \rangle = \langle 2i \rangle
\text{\textasciitilde}(\forall v_{i})(\alpha) \rangle = \langle 5, \text{\textasciitilde}v_{i}, \text{\textasciitilde}\alpha \rangle	\text{\textasciitilde}St \rangle = \langle 11, \text{\textasciitilde}t \rangle	\text{\textasciitilde}Et_{1}t_{2} \rangle = \langle 17, \text{\textasciitilde}t_{1}, \text{\textasciitilde}t_{2} \rangle	

Recall the inductive definition of an \(\mathcal{L}_{NT} \)-term \(t \): it is either

- a variable symbol \(v_{i} \),
- \(St_{1} \) where \(t_{1} \) is term,
- the constant symbol \(0 \),
- \(+t_{1}t_{2} \) or \(\cdot t_{1}t_{2} \) or \(Et_{1}t_{2} \) where \(t_{1}, t_{2} \) are terms.
\[\text{\textbf{\Delta-Definition of Terms}} = \{ \lceil t \rceil : t \text{ is a term} \} \]

\[
\begin{array}{l}
\lceil \lnot \alpha \rceil = \langle 1, \lceil \alpha \rceil \rangle \\
\lceil \theta t_2 \rceil = \langle 7, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \\
\lceil + t_1 t_2 \rceil = \langle 13, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \\
\lceil < t_1 t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \\
\lceil (\alpha \lor \beta) \rceil = \langle 3, \lceil \alpha \rceil, \lceil \beta \rceil \rangle \\
\lceil 0 \rceil = \langle 9 \rangle \\
\lceil \cdot t_1 t_2 \rceil = \langle 15, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \\
\lceil v_i \rceil = \langle 2i \rangle \\
\lceil (\forall v_i)(\alpha) \rceil = \langle 5, \lceil v_i \rceil, \lceil \alpha \rceil \rangle \\
\lceil St \rceil = \langle 11, \lceil t \rceil \rangle \\
\lceil Et_1 t_2 \rceil = \langle 17, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle \\
\end{array}
\]

Recall the inductive definition of an \(\mathcal{L}_{NT} \)-term \(t \): it is either

- a variable symbol \(v_i \),
- \(St_1 \) where \(t_1 \) is term,
- the constant symbol \(0 \),
- \(+ t_1 t_2 \) or \(\cdot t_1 t_2 \) or \(Et_1 t_2 \) where \(t_1, t_2 \) are terms.

Let’s start with \(\Delta \)-definition of

\[
\text{\textbf{Variables}} := \{ \lceil v_i \rceil : i = 1, 2, \ldots \} \quad (= \{ 2^{2i+1} : i = 1, 2, \ldots \}).
\]

by the formula

\[
\text{Variable}(x) \equiv (\exists y < x)[\text{Even}(y) \land (0 < y) \land (x = 2^Sy)].
\]
Δ-Definition of Terms = \{ \lnot t \triangledown : t \text{ is a term} \}

<table>
<thead>
<tr>
<th>Term (\triangledown)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lnot \alpha \triangledown) = (1, (\lnot \alpha))</td>
<td>(\lnot t_1 t_2 \triangledown = \langle 7, t_1 \triangledown, t_2 \triangledown)</td>
</tr>
<tr>
<td>(\alpha \lor \beta \triangledown) = (3, (\alpha \triangledown, \beta \triangledown)</td>
<td>(+t_1 t_2 \triangledown = \langle 13, t_1 \triangledown, t_2 \triangledown)</td>
</tr>
<tr>
<td>0 \triangledown = \langle 9 \rangle</td>
<td>(<t_1 t_2 \triangledown = \langle 19, t_1 \triangledown, t_2 \triangledown)</td>
</tr>
<tr>
<td>(\forall v_i (\alpha) \triangledown) = (5, (\forall v_i \triangledown, \alpha \triangledown)</td>
<td>(St \triangledown = \langle 11, t \triangledown)</td>
</tr>
<tr>
<td>(Et_1 t_2 \triangledown) = (17, (t_1 \triangledown, t_2 \triangledown)</td>
<td></td>
</tr>
</tbody>
</table>

Recall the inductive definition of an \(\mathcal{L}_{NT} \)-term \(t \): it is either

- a variable symbol \(v_i \),
- \(St_1 \) where \(t_1 \) is term,
- the constant symbol 0,
- \(+t_1 t_2 \) or \(\cdot t_1 t_2 \) or \(Et_1 t_2 \) where \(t_1, t_2 \) are terms.

We would like to write:

\[
\text{Term}(x) \equiv \text{Variable}(x) \lor x = 2^{10} \lor (\exists y < x)[\text{Term}(y) \land x = \overline{2^{12}, 3^{Sy}}^{\langle 11, y \rangle}]
\]

However, there is a problem with this “\(\Delta \)-formula”: It is a not legitimate formula of first-order logic! Note the circular use of the subformula \(\text{Term}(y) \).
Definition of Terms = \{ \overline{t} : t \text{ is a term} \}

Definition. A *term construction sequence* for a term \(t \) is a finite sequence of terms \((t_1, \ldots, t_\ell) \) such that \(t_\ell \equiv t \) and, for each \(k \in \{1, \ldots, \ell\} \), the term \(t_k \) is either

- a variable symbol,
- the constant symbol \(0 \),
- \(St_j \) for some \(j < k \), or
- \(+t_it_j \) or \(\cdot t_it_j \) or \(Et_it_j \) for some \(i, j < k \).
Δ-Definition of Terms = \{「t」: t is a term\}

Definition. A *term construction sequence* for a term t is a finite sequence of terms (t_1, \ldots, t_ℓ) such that $t_\ell \equiv t$ and, for each $k \in \{1, \ldots, \ell\}$, the term t_k is either

- a variable symbol,
- the constant symbol 0,
- St_j for some $j < k$, or
- $+t_it_j$ or $\cdot t_it_j$ or Et_it_j for some $i, j < k$.

Example. $(0, v_1, Sv_1, +0Sv_1)$ is term construction sequence for the $+0Sv_1$.
Definition. A *term construction sequence* for a term t is a finite sequence of terms (t_1, \ldots, t_ℓ) such that $t_\ell \equiv t$ and, for each $k \in \{1, \ldots, \ell\}$, the term t_k is either

- a variable symbol,
- the constant symbol 0,
- St_j for some $j < k$, or
- $+t_it_j$ or $\cdot t_it_j$ or Et_it_j for some $i, j < k$.

Example. $(0, v_1, Sv_1, +0Sv_1)$ is term construction sequence for the $+0Sv_1$.

Lemma. Every term t has a term construction sequence of length at most the number of symbols in t.

(Easy proof by induction.)
Δ-Definition of Terms = \{\langle t \rangle : t \text{ is a term}\}

Definition. A term construction sequence for a term \(t \) is a finite sequence of terms \((t_1, \ldots, t_\ell)\) such that \(t_\ell \equiv t \) and, for each \(k \in \{1, \ldots, \ell\} \), the term \(t_k \) is either

- a variable symbol,
- the constant symbol 0,
- \(St_j \) for some \(j < k \), or
- \(+t_it_j\) or \(\cdot t_it_j\) or \(Et_it_j \) for some \(i, j < k \).

Key to defining Terms: We will write a Δ-formula defining the set

\[\text{TermConSeq} = \{(c, a) : c = \langle \langle t_1 \rangle, \ldots, \langle t_\ell \rangle \rangle \text{ and } a = \langle t_\ell \rangle \text{ where } (t_1, \ldots, t_\ell) \text{ is a term construction sequence}\} \]
\textbf{Δ-Definition of Terms} = \{ \varphi t^\downarrow : t \text{ is a term} \}

\textit{TermConSeq}(c, a) \equiv \\
\text{Codenumber}(c) \land (\exists \ell < c) \left[\text{Length}(c, \ell) \land \text{IthElement}(a, \ell, c) \land \\
(\forall k \leq \ell)(\exists e_k < c) \left[\text{IthElement}(e_k, k, c) \land \\
\left\{ \begin{array}{l}
\text{Variable}(e_k) \\
\lor e_k = 2^{10} \\
\lor (\exists j < k)(\exists e_j < c)[\text{IthElement}(e_j, j, c) \land e_k = 2^{12} \cdot 3^{S e_j}] \\
\lor \ldots \end{array} \right. \right] \right] \\
\text{``} e_k \text{ is } \varphi Se_j \text{``} \right]}

\textbf{Key to defining Terms:} We will write a Δ-formula defining the set

\textbf{TermConSeq} = \{(c, a) : c = \langle \varphi t_1^\downarrow, \ldots, \varphi t_\ell^\downarrow \rangle \text{ and } a = \varphi t_\ell^\downarrow \text{ where } \\
(t_1, \ldots, t_\ell) \text{ is a term construction sequence} \}.
Δ-Definition of Terms = \{\overline{t} : t \text{ is a term}\}

Now there is an obvious way to define Term(a):

\[\text{Term}(a) \equiv (\exists c) \text{TermConSeq}(c, a). \]

To make this a Δ-formula, we need an upper bound on c as a function of a.
Δ-Definition of Terms $= \{ \lceil t \rceil : t \text{ is a term} \}$

Now there is an obvious way to define $\text{Term}(a)$:

$$
\text{Term}(a) :\equiv (\exists c) \text{TermConSeq}(c, a).
$$

To make this a Δ-formula, we need an upper bound on c as a function of a.

Suppose $a = \lceil t \rceil$. Another easy lemma by induction: The number of symbols in t is at most a. Therefore, there exists a term construction sequence (t_1, \ldots, t_ℓ) for t with length $\leq a$. We may assume that each t_k is a subterm of t, so that $\lceil t_k \rceil \leq \lceil t \rceil = a$ for all $k \in \{1, \ldots, \ell\}$.

Let $c := \langle \lceil t_1 \rceil, \ldots, \lceil t_\ell \rceil \rangle$. We have

$$
c = 2^{\lceil t_1 \rceil + 1}3^{\lceil t_2 \rceil + 1} \cdots (p_\ell)^{\lceil t_\ell \rceil + 1} \leq (p_\ell)^{\lceil t_1 \rceil + \cdots + \lceil t_\ell \rceil + \ell} \leq (p_\ell)^{\ell a + \ell} \leq (p_a)^{a^2 + a} \leq (a + 1)^{a^3}
$$

using the (easy) fact that the a^{th} prime number p_a is at most $(a + 1)^a$.

Δ-Definition of Terms = \{\(\lceil t \rceil : t \text{ is a term} \}\}

Now there is an obvious way to define \(\text{Term}(a) \):

\[
\text{Term}(a) :\equiv (\exists c) \text{TermConSeq}(c, a).
\]

To make this a \(\Delta \)-formula, we need an upper bound on \(c \) as a function of \(a \).

We may therefore take

\[
\text{Term}(a) :\equiv (\exists c \leq (a + 1)^3) \text{TermConSeq}(c, a).
\]
Construction Sequences for Other Recursive Definitions

In a similar way, using the notion of a formula construction sequence, we get a \(\Delta \)-definition of the set

\[
\text{FORMULAS} = \{ \Gamma \varphi \upharpoonright : \varphi \text{ is a formula} \}.
\]

Definition. A formula construction sequence for a formula \(\varphi \) is a finite sequence of terms \((\varphi_1, \ldots, \varphi_\ell) \) such that \(\varphi_\ell \equiv \varphi \) and, for each \(k \in \{1, \ldots, \ell\} \), the term \(\varphi_k \) is either

- \(\varphi = t_1 t_2 \) for some terms \(t_1 \) and \(t_2 \)
- \(\varphi < t_1 t_2 \) for some terms \(t_1 \) and \(t_2 \)
- \(\neg \varphi_j \) for some \(j < k \)
- \(\varphi_i \lor \varphi_j \) for some \(i, j < k \)
- \((\forall x)(\varphi_i) \) for some \(i < k \) and \(x \in Vars \)
Construction Sequences for General Recursive Definitions

This idea is very general: using an appropriate notion of construction sequence, we get a Δ-definition of any recursively defined set or function.

Suppose want a Δ-formula $\text{Factorial}(x, y)$ defining the function $\text{FACTORIAL} : \mathbb{N} \rightarrow \mathbb{N}$ (i.e., the $\{(a, b) \in \mathbb{N}^2 : b = a!\}$).

Key idea: Write a Δ-formula defining the set

$\text{FACTORIAL}\text{ConstSeq} := \{(a, b, c) \in \mathbb{N}^3 : b = a! \text{ and } c = \langle 0!, 1!, 2!, \ldots, a! \rangle\}$

using Codenumber, Length, IthElement as subformulas. (Details in tutorial.)

Homework Problem (PSET 4). Write down a Δ-formula defining the function $\text{FIBONACCI} : \mathbb{N} \rightarrow \mathbb{N}$.
Next Steps (Sections 5.11–5.12)

The following are Δ-definable:

LogicalAxiom := \{\[\Gamma \varphi \vdash : \varphi \text{ is a logical axiom}\}

RuleOfInference := \{\{(\[\Gamma \gamma_1 \vdash, \ldots, \Gamma \gamma_n \vdash\], \[\Gamma \varphi \vdash\]) : (\{\gamma_1, \ldots, \gamma_n\}, \varphi) \text{ is a rule of inference}\}\}

Axiom$_N$:= \{\[\Gamma N_1 \vdash, \ldots, \Gamma N_{11} \vdash\}\}

Deduction$_N$:= \{\{(\[\Gamma \delta_1 \vdash, \ldots, \Gamma \delta_1 \vdash\], \[\Gamma \varphi \vdash\]) : (\delta_1, \ldots, \delta_n) \text{ is a deduction from } N \text{ of } \varphi\}\}.

Important Δ-definable functions:

\[
\begin{align*}
\text{Num}(a) & := \[\Gamma a \vdash, \\
\text{TermSub}(\[\Gamma u \vdash, \Gamma x \vdash, \Gamma t \vdash\]) & := \[\Gamma u^x \vdash, \\
\text{Sub}(\[\Gamma \varphi \vdash, \Gamma x \vdash, \Gamma t \vdash\]) & := \[\varphi^x \vdash.
\end{align*}
\]
\textbf{\(\Delta\)-DEFINABLE SETS AND FUNCTIONS}

Using an appropriate notion of “construction sequence”, we get a \(\Delta\)-formula \(\text{Num}(x, y)\) which defines the function

\[
\text{Num}(a) := \lnot \exists b.
\]

\textbf{Δ-DEFINABLE SETS AND FUNCTIONS}

Using an appropriate notion of “construction sequence”, we get a \(\Delta \)-formula \(\text{Num}(x, y) \) which defines the function

\[
\text{Num}(a) := \neg \bar{a}^\gamma.
\]

This means:

\begin{itemize}
 \item \(\mathcal{N} \models \text{Num}(\bar{a}, \bar{b}) \) for all \((a, b) \in \mathbb{N}^2 \) such that \(b = \neg \bar{a}^\gamma \)
 \item \(\mathcal{N} \models \neg \text{Num}(\bar{a}, \bar{b}) \) for all \((a, b) \in \mathbb{N}^2 \) such that \(b \neq \neg \bar{a}^\gamma \)
\end{itemize}
Δ-DEFINABLE SETS AND FUNCTIONS

Similarly (by a more complicated “construction sequence”), there is a Δ-formula $\text{Sub}(x_1, x_2, x_3, y)$ which defines the function

$$\text{Sub}(\exists \varphi \neg, \exists x \neg, \exists t \neg) := \exists \varphi^x \neg.$$
Δ-DEFINABLE SETS AND FUNCTIONS

Similarly (by a more complicated “construction sequence”), there is a Δ-formula $Sub(x_1, x_2, x_3, y)$ which define the function

$$Sub(\varphi^\frown, x^\frown, t^\frown) := \varphi_x^\frown.$$

This means: for all $(a, b, c, d) \in \mathbb{N}^4$,

- $\mathcal{M} \models Sub(\overline{a}, \overline{b}, \overline{c}, \overline{d})$ if $a = \varphi^\frown$ and $b = x^\frown$ and $c = t^\frown$ and $d = \varphi_x^\frown$ for some formula φ and variable symbol x and term t
- $\mathcal{M} \models \neg Sub(\overline{a}, \overline{b}, \overline{c}, \overline{d})$ otherwise.
\textbf{Δ-DEFINABLE SETS AND FUNCTIONS}

Using \(\Delta\)-formulas \(\text{Num}(x, y)\) and \(\text{Sub}(x_1, x_2, x_3, y)\) (among other useful \(\Delta\)-formulas such as \textit{Free} and \textit{Substitutable}), we get \(\Delta\)-formulas defining sets:

\begin{align*}
\text{LogicalAxiom} & := \{ \varphi^\neg : \varphi \text{ is a logical axiom} \} \\
\text{Axiom}_N & := \{ \textit{\neg}N_1 \neg, \ldots, \textit{\neg}N_{11} \neg \}, \\
\text{RuleOfInf} & := \{ (c, a) : c = \langle \textit{\neg}\gamma_1 \neg, \ldots, \textit{\neg}\gamma_n \neg \rangle \text{ and } a = \textit{\neg}\varphi \neg \}
\text{where } (\{\gamma_1, \ldots, \gamma_n\}, \varphi) \text{ is a rule of inference} \}.
\end{align*}

Finally, we get a \(\Delta\)-formula \(\text{Deduction}_N(y, z)\) which defines the set

\begin{align*}
\text{Deduction}_N & := \{ (c, a) : c = \langle \textit{\neg}\delta_1 \neg, \ldots, \textit{\neg}\delta_1 \neg \rangle \text{ and } a = \textit{\neg}\varphi \neg \}
\text{where } (\delta_1, \ldots, \delta_n) \text{ is a deduction from } N \text{ of } \varphi \}.
\end{align*}
The Σ-formula $Thm_N(x)$

The set

$$THM_N := \{ \uparrow \varphi \uparrow : N \vdash \varphi \}$$

is defined by Σ-formula

$$Thm_N(x) :\equiv (\exists y)\, Deduction_N(y, x).$$
The Σ-formula $Thm_N(x)$

The set

$$\text{THM}_N := \{ \exists \varphi \upharpoonright : N \vdash \varphi \}$$

is defined by Σ-formula

$$Thm_N(x) \equiv (\exists y)\text{Deduction}_N(y, x).$$

This means: for every $a \in \mathbb{N}$,

- $\mathfrak{n} \models Thm(\bar{a})$ if $a = \exists \varphi \upharpoonright$ for some formula φ such that $N \vdash \varphi$,

 (In this case, $N \vdash Thm(\bar{a})$ since N proves every Σ-sentence which is true in \mathfrak{m} by Proposition 5.3.13.)

- $\mathfrak{n} \models \neg Thm(\bar{a})$ otherwise.

 (We cannot conclude that $N \vdash \neg Thm(\bar{a})$ since $\neg Thm(\bar{a})$ is (equivalent to) a Π-sentence.)
The Σ-formula $Thm_N(x)$

The set

$$THM_N := \{ \varphi \vdash N \vdash \varphi \}$$

is defined by Σ-formula

$$Thm_N(x) \equiv (\exists y) Deduction_N(y, x).$$

There is no obvious way to rewrite $Thm_N(x)$ as a Δ-sentence (in fact, this is impossible). For instance, we cannot replace $(\exists y)$ with $(\exists y < x^{x^x})$, since this would imply that every formula of length ℓ provable by φ has a deduction of length $< \ell^{\ell^\ell}$ (which is false).
Representable \Rightarrow Σ-Definable

Previously, we showed that every Δ-definable set is representable.

(This is a straightforward corollary of Proposition 5.3.13: N proves every Σ-sentence which is true in \mathcal{M}.)

Next, we show that every representable set is Σ-definable.