1 The Switching Lemma

A k-DNF (= disjunctive-normal-form formula of width k) is a depth-2 formula of the form $\text{OR}(C_1, \ldots, C_m)$ where each clause C_i is an AND of $\leq k$ literals. A k-CNF (= conjunctive-normal-form formula of width k) is a depth-2 formula of the form $\text{AND}(C_1, \ldots, C_m)$ where each C_i is an OR of $\leq k$ literals.

A decision tree of depth 0 is a constant (0 or 1). For $d \geq 1$, a decision tree of depth $\leq d$ is a triple $T = (x_i, T_0, T_1)$ where x_i is a variable and T_0 and T_1 are decision trees of depth $\leq d - 1$. Decision trees compute boolean functions in the obvious way: if $T = (x_i, T_0, T_1)$, then $T(x) := T_{x_i}(x)$.

The decision-tree depth of a boolean function f, denoted $D(f)$, is the minimum depth of a decision tree that computes f. Note that $D(f) = 0$ iff f is a constant, and $D(f) = 1$ iff f is a literal. The function $f(a, b, c) = (a \land b) \lor (\neg a \land \neg c)$ has decision-tree depth 2. AND$_n$ and XOR$_n$ are examples of functions with the maximum possible decision-tree depth n.

It's easy to see that any function with decision-tree depth k is equivalent to both a k-DNF and a k-CNF. (There is a weak converse to this fact: any function which can be expressed as both a k-DNF and an ℓ-CNF has decision-tree depth at most $k\ell$.) A corollary of this fact is that an OR (resp. AND) of arbitrarily many functions with decision-tree depth k is equivalent to a k-DNF (resp. k-CNF).

Previously we studied the effect of the p-random restriction R_p on DeMorgan formulas. R_p also simplifies depth-k decision trees, as well as k-DNF and k-CNF.

Theorem 1 (Effect of R_p on decision-tree depth). If $D(f) = k$, then

$$
P[\ D(f|R_p) \geq \ell \] \leq (2p)^{\ell} \binom{k}{\ell} = O(pk/\ell)^{\ell}
$$

for all $\ell \geq 1$.

Proof. Induction on k. Base case $k = 0$ is trivial, so assume $k \geq 1$ and $\ell \geq 1$. Let $T = (x_i, T_0, T_1)$
be a DT of depth \(k \). Then

\[
P[D(T|R_p) \geq \ell] = P[R_p(x_i) = * \text{ and } D(T|R_p) \geq t] \\
+ P[R_p(x_i) = 0 \text{ and } D(T|R_p) \geq \ell] + P[R_p(x_i) = 1 \text{ and } D(T|R_p) \geq \ell] \\
= pP[D(T_0|R_p) \geq \ell - 1 \text{ or } D(T_1|R_p) \geq \ell - 1] \\
+ \frac{1-p}{2}
\left(P[D(T_0|R_p) \geq \ell] + P[D(T_1|R_p) \geq \ell] \right) \\
\leq p\left(P[D(T_0|R_p) \geq \ell - 1] + P[D(T_1|R_p) \geq \ell - 1] \right) \\
+ \frac{1-p}{2}
\left(P[D(T_0|R_p) \geq \ell] + P[D(T_1|R_p) \geq \ell] \right) \\
\leq 2p(2p)^{\ell-1}\binom{k-1}{\ell-1} + (2p)^\ell\binom{k-1}{\ell} \\
= (2p)^\ell\left(\frac{k}{\ell}\right).
\]

\[\square \]

Håstad’s Switching Lemma (1986) gives a similar bound for \(k \)-DNF and \(k \)-CNF formulas (i.e., OR’s or AND’s of depth-\(k \) decision trees). Instead of \(O(pk/\ell)^{\ell} \), we get a bound \(O(pk)^{\ell} \).

Theorem 2 (Switching Lemma). If \(f \) is a \(k \)-DNF or \(k \)-CNF, then

\[
P[D(f|R_p) \geq \ell] \leq (5pk)^{\ell}.
\]

Fix \(k, \ell \geq 1 \) and \(p \in [0,1] \) and suppose \(f = \text{OR}(C_1, \ldots, C_m) \) where each clause \(C_j \) is an AND of \(\leq k \) literals. (In particular, we fix an ordering of clauses \(C_1, \ldots, C_m \).) Let \(\text{Vars}(C_j) \subseteq [n] \) denote the set of variables occurring in \(C_j \), that is, \(\text{Vars}(C_j) = \{i : x_i \text{ or } \pi_i \text{ occurs in } C_j\} \).

For every restriction \(\rho : [n] \rightarrow \{0,1,*\} \), we define a decision tree \(T(f,\rho) \) called the “canonical decision tree of \(f|\rho \)”. This is defined as follows. If \(\rho \) fixes every clause to 0, then \(T(f,\rho) \) outputs 0. Otherwise, let \(C_j \) be the first clause not fixed to 0 by \(\rho \) and proceed as follows:

- If \(C_j \) is fixed to 1 by \(\rho \) (i.e. every literal is set to 1), then \(T(f,\rho) \) outputs 1.
- If \(C_j \) is not fixed to 1 by \(\rho \) (i.e. no literal is set to 0 and at least one literal has value *), then \(T(f,\rho) \) queries all free variables in \(C_j \) and proceeds as the decision tree \(T(f,\rho\pi) \) where
 - \(\pi \in \{0,1\}^{\text{Vars}(C_j) \cap \text{Stars}(\rho)} \) is the assignment to the queried variables of \(C_j \),
 - \(\rho\pi \in \{0,1,*\}^n \) is the combined restriction with \((\rho\pi)_i = \begin{cases} \pi_i & \text{if } i \in \text{Vars}(C_j) \cap \text{Stars}(\rho), \\ \rho_i & \text{otherwise}. \end{cases} \)
Clearly the depth of $T(f, R_p)$ is an upper bound on $D(f| R_p)$. Therefore, it suffices to show

\[(1) \quad P[\text{depth}(T(f, R_p)) \geq \ell] \leq (16pk)^\ell \]

Let’s name this bad event

$$ \text{BAD} \stackrel{\text{def}}{=} \{ \rho : \text{depth}(T(f, \rho)) \geq \ell \}. $$

To prove (1), we will associate each $\rho \in \text{BAD}$ with a restriction $\hat{\rho}$ (not necessarily in BAD) such that

(i) $|\text{Stars}(\hat{\rho})| = |\text{Stars}(\rho)| - \ell$,

(ii) the function $\rho \mapsto \hat{\rho}$ is at most $(4k)^\ell$-to-1,

that is, for every restriction σ, we have $\#\{\rho \in \text{BAD} : \hat{\rho} = \sigma\} \leq (4k)^\ell$.

Note that property (i) implies $P[R_p = \rho] = (\frac{2p}{1-p})^\ell P[R_p = \hat{\rho}]$. (This follows from the observation that $P[R_p = \sigma] = p^{|\text{Stars}(\sigma)|} (\frac{1-p}{2})^{|\text{Nonstars}(\sigma)|}$ for all restrictions σ.) Without loss of generality, we may assume that $p \leq 1/2$ (since the Theorem is trivial if $p \leq 1/16$). Therefore, we have

\[(2) \quad P[R_p = \rho] \leq (4p)^\ell P[R_p = \hat{\rho}]. \]

Assuming we have a function $\rho \mapsto \hat{\rho}$ satisfying (i) and (ii), we obtain inequality (1) as follows:

$$ P[R_p \in \text{BAD}] = \sum_{\rho \in \text{BAD}} P[R_p = \rho] $$

$$ \leq (4p)^\ell \sum_{\rho \in \text{BAD}} P[R_p = \hat{\rho}] \quad \text{(by (2))} $$

$$ = (4p)^\ell \sum_{\sigma : [n] \rightarrow \{0,1,\ast\}} P[R_p = \sigma] \cdot \#\{\rho \in \text{BAD} : \hat{\rho} = \sigma\} $$

$$ \leq (16pk)^\ell \sum_{\sigma : [n] \rightarrow \{0,1,\ast\}} P[R_p = \sigma] \quad \text{(by (ii))} $$

$$ = (16pk)^\ell. $$

Definition of $\hat{\rho}$. It remains to define the function $\rho \mapsto \hat{\rho}$ and show that it satisfies (i) and (ii). Consider any $\rho \in \text{BAD}$. By definition, the decision tree $T(f, \rho)$ contains a path of length $\geq \ell$. Fix any such “long path” in $T(f, \rho)$. Let $Q \subseteq [n]$, $|Q| = \ell$, consist of the first ℓ variables queries on this path, and let $\pi : Q \rightarrow \{0,1\}$ be the corresponding assignment of these variables.

By definition of $T(f, \rho)$, there exists a partition $Q = Q_1 \uplus \cdots \uplus Q_t$ and clauses C_{j_1}, \ldots, C_{j_t} ($1 \leq j_1 < \cdots < j_t \leq m$) where C_{j_i} is responsible for queries Q_i in the process defining $T(f, \rho)$. Let $\pi_i : Q_i \rightarrow \{0,1\}$ denote the corresponding sub-assignment of π. In addition:

- let $a_i \in \{0,1\}^k$ be the characteristic function of Q_i among variables of C_{j_i},
• let $b_i \in \{0, 1\}^{Q_i}$ encode π_i (under the order in which variables occur in C_{j_i}),
• let $\tilde{\pi}_i : Q_i \rightarrow \{0, 1\}$ be the unique assignment to Q_i such that $C_i|\rho\pi_1 \cdots \pi_{i-1}\tilde{\pi}_i \neq 0$.

Finally, we define $\tilde{\rho}$ by

$$\tilde{\rho} \overset{\text{def}}{=} \rho\tilde{\pi}_1 \cdots \tilde{\pi}_t.$$

Property (i) clearly holds, since $\tilde{\rho}$ fills in exactly ℓ stars of ρ. As for property (ii), we establish that $\rho \mapsto \tilde{\rho}$ is at most $(4k)^\ell$-to-1 over BAD by showing:

(ii-a) the function $\rho \mapsto (\tilde{\rho}, a, b)$ is 1-to-1 over BAD,

(ii-b) the pair (a, b) (i.e. the string $(a_1, \ldots, a_t, b_1, \ldots, b_t)$) takes at most $(4k)^\ell$ possible values over $\rho \in \text{BAD}$.

To see that (ii-a) holds, we describe a procedure for inverting $\rho \mapsto (\tilde{\rho}, a, b)$ over BAD. Given $(\tilde{\rho}, a, b)$:

• Note that C_{j_1} is the first clause of f with the property that $C_{j_1}|\tilde{\rho} \neq 0$. Therefore, $\tilde{\rho}$ gives knowledge of C_{j_1}, and a_1, b_1 then give knowledge of Q_1, π_1. This allows us to determine $\rho\pi_1\tilde{\pi}_2 \cdots \tilde{\pi}_t$.

• Next (if $|Q_1| < \ell$), note that C_{j_2} the first clause of f with the property that $C_{j_2}|\rho\pi_1\tilde{\pi}_2 \cdots \tilde{\pi}_t \neq 0$. Via a_2, b_2, we now have knowledge of Q_2, π_2. This allows us to determine $\rho\pi_1\pi_2\tilde{\pi}_3 \cdots \tilde{\pi}_t$.

• This process continues until we have learned $Q_1, \ldots, Q_t, \pi_1, \ldots, \pi_t$ and $\rho\pi_1 \cdots \pi_t$, as which point we know ρ.

Finally, to show (ii-b), we note that each (a_1, \ldots, a_t) is an element of $\{0, 1\}^k$ where $|a_1|, \ldots, |a_t| \geq 1$ and $|a_1| + \cdots + |a_t| = \ell$. The number of such sequences is at most $(2k)^\ell$. The possibilities for (b_1, \ldots, b_t), given each (a_1, \ldots, a_t), contribute another 2^ℓ factor. \hfill \Box

2 Lower bounds for XOR$_n$

Using the Switching Lemma, we able to prove tight lower bounds for the depth $d + 1$ circuit size (as well as the depth $d + 1$ formulas size) of XOR$_n$.

Theorem 3. Let C be an AC0 circuit of depth $d + 1$ and size S. Let $p = \frac{1}{10(20 \log S)^d}$. Then

$$\Pr\left[D(C|R_p) \geq \ell \right] \leq \frac{1}{2^\ell} + \frac{1}{S}.$$
Proof. Let $p_1 = 1/10$ and let ρ_1 be a p_1-random restriction over the variables of C. Note that each bottom-level gate g of C is an AND or OR of literals, hence a 1-CNF or 1-DNF. Therefore, by the Switching Lemma, $\mathbb{P}[D(g|\rho_1) > 2 \log S] \leq (5p_1)^{2\log S} \leq 1/S^2$.

For $i \in \{2, \ldots, d+1\}$, let $p_i = p_{i-1}/20 \log S$ and let ρ_i be a p_i-random restriction over the stars of ρ_{i-1}. For each gate $g = \text{AND/OR}(g_1, \ldots, g_m)$ of depth $i \leq d$, if we condition on $D(g_j|\rho_1 \ldots \rho_{i-1}) \leq 2 \log S$ for all $j \in [m]$ (in which case g is a 2-$\log S$-CNF/DNF), then by the Switching Lemma $D(g|\rho_1 \ldots \rho_i) \leq 2 \log S$ except with probability $(5p_i \cdot 2 \log S)^{2\log S} = 2^{-2\log S} = 1/S^2$.

It follows that, except with probability $1/S$, we have $D(g|\rho_1 \ldots \rho_d) \leq 2 \log S$ for all gates g below the output gate of C. If we condition on this event, then by the Switching Lemma $D(C|\rho_1 \ldots \rho_{d+1}) \leq \ell$ except with probability $(5p_{d+1} \cdot 2 \log S)^{\ell} = 2^{-\ell}$. The proof is completed by noting that $\rho_1 \ldots \rho_{d+1}$ in aggregate is a $p_1 \cdot \ldots \cdot p_{d+1}$-random restriction and that $p_1 \cdot \ldots \cdot p_{d+1} = 1/(20 \log S)^d$.

Corollary 4. $C_{d+1}(\text{XOR}_n) = 2^{\Omega(n^{1/d})}$

Proof. Let $S = C_{d+1}(\text{XOR}_n)$ and let $p = \frac{1}{10^{d+1}(2 \log S)^d}$. We have

$$\mathbb{P}[D(\text{XOR}_n|R_p) \geq 1] \leq \frac{1}{2} + \frac{1}{S}.$$

Assuming $S \geq 4$ (without loss of generality), it follows that

$$\mathbb{P}[D(\text{XOR}_n|R_p) = 0] \geq \frac{1}{4}.$$

Since $\mathbb{P}[D(\text{XOR}_n|R_p) = 0] = \mathbb{P}[\ Bin(n, p) = 0]$, it follows that $p = O(1/n)$ and hence

$$\frac{1}{10^{d+1}(2 \log S)^d} = \Omega(n).$$

We conclude that $S = 2^{\Omega(n^{1/d})}$.

Exercise. Show $C_d(\text{MAJ}_n) = 2^{\Omega(n^{1/d})}$ by reduction to XOR$_n$.

3 Lower Bounds for $\text{AC}^0[p]$ by the Polynomial Method (Razborov’87, Smolensky’87)

We work over the field \mathbb{F}_p for an arbitrary prime p.

Recall that $\text{AC}^0[p]$ circuits and formulas have inputs labeled by literals and unbounded fan-in AND, OR, MOD_p gates where $\text{MOD}_p(x_1, \ldots, x_n) = 1 \iff x_1 + \cdots + x_n = 0 \text{ mod } p$.

5
Definition 5. Let $A \in \mathbb{F}_p[x_1, \ldots, x_n]$ be a random polynomial (i.e. a random variable over $\mathbb{F}_p[x_1, \ldots, x_n]$).

The degree of a random polynomial $A \in \mathbb{F}_p[x_1, \ldots, x_n]$ is the maximum degree of a polynomial in the support of A.

The ε-approximate degree of $f : \{0,1\}^n \to \{0,1\}$, denoted $\deg_\varepsilon(f)$, is the minimum degree of a random polynomial $A \in \mathbb{F}_p[x_1, \ldots, x_n]$ such that $\Pr[A \neq A(x)] \leq \varepsilon$ for every $x \in \{0,1\}^n$.

Lemma 6. There exists a non-random polynomial $a \in \mathbb{F}_p[x_1, \ldots, x_n]$ of depth $\deg_\varepsilon(f)$ such that $\Pr_{x \in \{0,1\}^n}[a(x) \neq f(x)] \leq \varepsilon$.

Proof. Let A be an ε-approximating polynomial for f. By Markov’s inequality

$$\Pr_{x \in \{0,1\}^n}[A(x) \neq f(x)] > \varepsilon \leq \frac{\mathbb{E}_{x \in \{0,1\}^n}[A(x) \neq f(x)]}{\varepsilon} < 1.$$

Therefore, there exists $a \in \text{Supp}(A)$ such that $\Pr_{x \in \{0,1\}^n}[a(x) \neq f(x)] \leq \varepsilon$. \hfill \Box

Lemma 7. Suppose $f(x) = g(h_1(x), \ldots, h_m(x))$. Then for all $\delta, \varepsilon_1, \ldots, \varepsilon_m$,

$$\deg_{\delta + \varepsilon_1 + \ldots + \varepsilon_m}(f) \leq \deg_\delta(g) \cdot \max_i \deg_{\varepsilon_i}(h_i).$$

Proof. Let $A_g \in \mathbb{F}_p[y_1, \ldots, y_m]$ be a δ-approx random poly for g and let $A_{h_i} \in \mathbb{F}_p[x_1, \ldots, x_n]$ be ε_i-approx random polys for h_i. Let $A_f(x) := A_g(A_{h_1}(x), \ldots, A_{h_m}(x))$. Then $\deg(A_f) = \deg(A_g) + \max_i \deg(A_{h_i})$. And

$$\Pr_{A_f}[A_f(x) \neq f(x)] \leq \Pr_{A_g,A_{h_1},\ldots,A_{h_m}}\left[\bigvee_i \left(A_{h_i}(x) \neq h_i(x) \right) \lor A_g(x) \neq g(x) \right] \leq \delta + \sum_i \varepsilon_i. \hfill \Box$$

We use this lemma together with bounds on $\text{MOD}_{p,n}$ and OR_n and AND_n to obtain bounds on \deg_ε for $\text{AC}^0[p]$ circuits and formulas.

Lemma 8. For all ε and n, we have $\deg_\varepsilon(\text{MOD}_{p,n}) \leq p - 1$.

Note: This bound does not depend on ε or n.

Proof. For all $x \in \{0,1\}^n$, we have $\text{MOD}_p(x_1, \ldots, x_n) = (x_1 + \cdots + x_n)^{p-1}$ by Fermat’s Little Theorem. Therefore, $\deg_\varepsilon(\text{MOD}_{p,n}) \leq \deg_0(\text{MOD}_{p,n}) \leq p - 1$. \hfill \Box

Lemma 9. $\deg_\varepsilon(\text{OR}_n) \leq p(\log_p(1/\varepsilon) + 1)$

Note: Again, bound does not depend on the fan-in n. \

6
Proof. Fix any \(x \in \{0,1\}^n \). For random \(\lambda \in \mathbb{F}_p^n \), we have

\[
\mathbb{P}_{\lambda} \left[\text{OR}(x) \neq (\lambda_1 x_1 + \cdots + \lambda_n x_n)^{p-1} \right] = \begin{cases} 0 & \text{if } x = (0, \ldots, 0), \\ 1/p & \text{if } x \neq (0, \ldots, 0). \end{cases}
\]

Therefore, for independent random \(\lambda^{(1)}, \ldots, \lambda^{(t)} \in \mathbb{F}_p^n \),

\[
\mathbb{P}_{\lambda^{(1)}, \ldots, \lambda^{(t)}} \left[\text{OR}(x) \neq 1 - \prod_{i=1}^{t} \left(1 - (\lambda^{(i)}_1 x_1 + \cdots + \lambda^{(i)}_n x_n)^{p-1} \right) \right] \leq 1/p^t.
\]

Thus, \(\text{OR}(x) \) is approximated with error \(1/p^t \) on every \(x \in \{0,1\}^n \) by a random polynomial of degree \(t(p-1) \).

For error \(\varepsilon \), we take \(t = \lceil \log_p (1/\varepsilon) \rceil \) and get degree \(pt \leq (\log_p (1/\varepsilon) + 1) \).

Corollary 10. \(\deg_{\varepsilon}(\text{AND}_n) \leq p(\log_p (1/\varepsilon) + 1) \)

Theorem 11. If \(C \) is an \(\mathsf{AC}^0[p] \) circuit of depth \(d \) and size \(S \), then \(\deg_{1/4}(C) \leq O(p \log_p (S))^d \).

Proof. Replace each \(\text{AND}/\text{OR}/\text{MOD}_p \) gate \(g : \{0,1\}^n \to \{0,1\} \) with an \(1/4S \)-approximating polynomial \(A_g \in \mathbb{F}_p[y_1, \ldots, y_m] \) of degree \(O(p \log_p (S/4)) = O(p \log_p (S)) \). The resulting random polynomial has degree \(O(p \log_p (S))^d \) and approximates \(C \) with error at most \(S \cdot (1/4S) = 1/4 \).

Next lecture we will use this theorem to show:

Theorem 12. Depth-\(d \) \(\mathsf{AC}^0[3] \) circuits for XOR_\(n \) require size \(2^{\Omega(n^{1/2d})} \).