Constructible Numbers, Fields and Surds

Original Notes adopted from February 5, 2002 (Week 18)
© P. Rosenthal , MAT246Y1, University of Toronto, Department of Mathematics typed by A. Ku Ong

Constructible Numbers

If a,b,c are constructible $\&>0$,

if $b<c$
$\underline{c}=\underline{x}$
b a
$\mathrm{x}=\mathrm{ac} / \mathrm{b}$

if $b>c$
$\underline{b}=\underline{a}$
c x
$\mathrm{x}=\mathrm{ac} / \mathrm{b}$
b

So can construct ac / b for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ positive constructed numbers. In particular, take $\mathrm{b}=1$, shows can construct the product of any two constructible positive numbers.

Take $c=1$, show can construct quotient of any two constructible positive numbers.
Let $\mathrm{C}=$ set of all constructible numbers.
If $x \in C,-x \in C$.

$0,1 \in \mathrm{C}$
If $a, b, \in C$, so is $a+b$.

```
Definition: A subset F of R is a number field if
1) 0,1\inF
2) If }x,y\inF,\mathrm{ so are }x+y&x*y
3) If }x\inF,\mathrm{ so is -x.
4) If }x\inF&x\not=0\mathrm{ , then }1/x\inF\mathrm{ .
```

Above we showed: C is a number field.
$\mathrm{C} \supset \mathrm{Q}$
Eg. R,Q are number fields
$Q(\sqrt{ } 2)$ is defined to be $\{a+b \sqrt{ } 2: a, b \in Q\}$
Obviously Properties 1,3,4 hold
Property 2:
$(a+b \sqrt{ } 2)(c+d \sqrt{ } 2)=a c+2 b d+(b c+a d) \sqrt{ } 2 \in Q(\sqrt{ } 2)$
Property 4:
$\frac{1}{a+b \sqrt{ } 2} * \frac{a-b \sqrt{ } 2}{a-b \sqrt{ } 2}=\frac{a-b \sqrt{ } 2}{a^{2}-2 b^{2}}=\frac{a}{a^{2}-2 b^{2}}+\underset{a^{2}-2 b^{2}}{ }+\sqrt{ } 2$
If $a^{2}-2 b^{2}=0$
$a^{2}-2 b^{2}(a / b)^{2}=2 \Rightarrow \sqrt{ } 2$ rational, contradiction.
\therefore If a,b not both $0,1 / \mathrm{a}+\mathrm{b} \sqrt{ } 2 \in \mathrm{Q}(\sqrt{ } 2)$

More generally, if F any number field $\& r \in F, r>0$, but $V_{r} F$.

We define $\mathbf{F}(v)$ (the field of F extended by square root of r
$=\{\mathrm{a}+\mathrm{b} \sqrt{ } \mathrm{r}: \mathrm{a}, \mathrm{b} \in \mathrm{F}\}$

Lemma: If F, r as above, then $F(\sqrt{ } r)$ is a number field.

Proof: $0,1, \in \mathrm{~F}$.
closed under,$+{ }^{*}$,
$\frac{1}{a+b \sqrt{ } r} * \frac{a-b \sqrt{ } r}{a-b \sqrt{ } r}=\frac{a-b \sqrt{r}}{a^{2}-r b^{2}}=\frac{a}{a^{2}-r b^{2}}-\frac{b}{a^{2}-r b^{2}} \sqrt{r} \quad$ if $a^{2}-r b^{2} \neq 0$
But if $\mathrm{a}^{2}-\mathrm{rb}^{2}=0$
$(\mathrm{a} / \mathrm{b})^{2}=\mathrm{r} \Rightarrow \mathrm{r} \in \mathrm{F}$, contradiction
Eg. $\mathbf{F}=\mathbf{Q}(\sqrt{ } \mathbf{2}), \mathbf{r}=\sqrt{ } \mathbf{3}$.
$F(\sqrt{ } 3)=(Q(\sqrt{ } 2))(\sqrt{ } 3)$
$=\{a+b \sqrt{ } 3: a, b \in Q(\sqrt{ } 2)\}$
$=\left\{a_{1}+a_{2} \sqrt{ } 2+\left(b_{1}+b_{2} \sqrt{ } 2\right) \sqrt{ } 3: a_{1}, a_{2}, b_{1}, b_{2} \in Q\right\}$
Definition: A tower of number fields is a finite collection of number fields which each obtained from the previous one by adjoining a square root:
F_{0} a number field
$F_{1}=F_{0}\left(\downarrow_{0}\right)$ with $r_{0} \in F, r_{0}>0 . \downarrow r_{0} \notin F_{0}$
$F_{2}=F_{1}\left(\checkmark_{1}\right)$ with $r_{1} \in F, r_{1}>0 . \vee r_{1} \in F_{1}$

```
F
```


Theorem: If $r \in \mathbf{C} \& r>0$, then $\downarrow \in \mathbf{C}$

Proof:
\square

D
bisect $\mathrm{r}+1$. constructing $\mathrm{M}=\frac{\mathrm{r}+1}{2}$
Make circle center M and radius M
Erect a perpendicular at r . Make Triangles.
$\angle \mathrm{OCA}=90^{\circ}$
$\angle \mathrm{COD}+\angle \mathrm{OCD}=90^{\circ}$
$\angle \mathrm{DCA}+\angle \mathrm{OCD}=90^{\circ}$
$\therefore \angle \mathrm{COD}=\angle \mathrm{DCA}$
\therefore Triangle OCD is similar (\sim) to Triangle ACD
$\therefore \mathrm{x} / 1=\mathrm{r} / \mathrm{x}, \quad \mathrm{x}^{2}=\mathrm{r}$
$\therefore \mathrm{x}=\sqrt{ } \mathrm{r}$, and $\mathrm{x} \in \mathrm{C}$, so $V_{\mathrm{r}} \in \mathrm{C}$.
Corollary : If $\mathrm{Q} \subset \mathrm{F}_{1} \subset \mathrm{~F}_{2} \subset \mathrm{~F}_{3} \ldots . \subset \mathrm{F}_{\mathrm{k}}$ is any tower
(i.e. $F_{j}=F_{j-1}\left(v_{j-1}\right)$ with $r_{j_{-1}} \in F_{j-1} r_{j-1}>0, v_{j-1} \notin F_{j-1}$), then
$\mathrm{F}_{\mathrm{k}} \subset \mathrm{C}$

Definition: A surd is a number that is in some F_{k} that is in a tower starting at Q.
 Corollary: The collection of surds is contained in C (or, every surd is constructible)

Let $S=$ set of al surds
$\mathrm{C}=$ set of all constructible numbers.

Proved: $\mathrm{S} \subset \mathrm{C}$.
Want: S = C.
To construct numbers: We start with 0,1 , get Q
Note: Can construct point (a, b) in plane if and only if can construct numbers $a \& b$.

If we con construct a, b. We can construct the point (a, b).

Given the point (a,b), we have a, b.

Must show: $\mathrm{C} \subset \mathbf{S}$

Constructions consist of:

1) joining line between 2 constructed points
2) making circle, center at constructed point, radius a constructed number.
3) taking points of intersection of the above.

To prove $C \subset S$, we'll show: if you start with points whose coordinates are in S, then any construction produces points whose coordinates are in S.
Suppose (a,b) \& (c,d) are constructed \& a,b,c,d $\in S$.
Note: There exists an extension (i.e. end of a tower) F of $\mathrm{Q} a, \mathrm{~b}, \mathrm{c} \& \mathrm{~d}$.
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \in \mathrm{F}$. Equation of line joining: (x, y)
$\mathrm{y}-\mathrm{b}=\mathrm{d}-\mathrm{b}$
$x-a \quad c-a$
All coefficients are in F. Equation of form $s x+t y=u$, with $s, t, u \in F$.
This proves: a line joining points whose coordinates are in a number field F has an equation with coefficients in F .
Note: If 2 lines have equations with coefficients in F , then the coordinates of points of intersection one in F . (solve simultaneously)
This proves: If a point is constructed as the intersection of 2 lines, both of which are determined by points with coefficients in S , then that point has coefficients in S .

Given a circle with center (a, b) and radius $r, \&$ if $a, b, r \in F(F$ number field $)$ an equation of circle: $(x-a)^{2}+$ $(y-b)^{2}=r^{2} \ldots$ coefficients in F.

Lemma: Points constructed by intersecting a line determined by surd points \& a circle with surd radius and surd center has surd coordinates.

Proof: Circle has equation
$x^{2}+b x+y^{2}+c y+d=0 . b, c, d \in S$
Line has equation $e x+f y+g=0$. e,f,g $\in S$.
Simultaneous solution keeps within surd field:
$y=s x+t . . . s, t \in S$
$\mathrm{x}^{2}+\mathrm{bx}+(\mathrm{sx}+\mathrm{t})^{2}+\mathrm{c}(\mathrm{sx}+\mathrm{t})+\mathrm{d}=0$.
Get quadratic in x, use quadratic formula \Rightarrow within $F(\sqrt{ })$ if coefficients in $F \& r=b^{2}-4 a c$. Stay in surds.
2 circles intersecting
$\mathrm{x}^{2}+\mathrm{ax}+\mathrm{y}^{2}+\mathrm{by}+\mathrm{c}=0$
$x^{2}+d x+y^{2}+e y+f=0$
$(a-d) x+(b-e) y+c-f=0 \Rightarrow$ Simultaneously solve both .
$\mathrm{S}=\mathrm{C}$
(subtraction --- share intersection)

