Mathematical Induction

Original Notes adopted from September 11, 2001(Week 1)

© P. Rosenthal , MAT246Y1, University of Toronto, Department of Mathematics typed by A. Ku Ong

<u>Natural Numbers</u> 1,2,3,4,5,6... n = { 1,2,3,4,... }

Principle of Mathematical Induction If $S \subset n$ such that a) $1 \in S$ b) $(k+1) \in S$ whenever $k \in S$, then s = n. **Eg. Prove:** $1^2 + 2^2 + 3^2 + ... + n^2 = \underline{n(n+1)(2n+1)}_{6}$ Let $S = \{m: 1^2 + 2^2 + 3^2 + ... + m^2 = \underline{m(m+1)(2m+1)}_{6}$ To show: S = n. By Mathematical Induction, suffices to show a) $1 \in S$

b) b) $(k+1) \in S$ whenever $k \in S$

Is
$$1 \in S$$
? $1^2 = \frac{1(1+1)(2+1)}{6}$
 $1 = 1$

Suppose
$$\mathbf{k} \in \mathbf{S}$$

 $1^2 + 2^2 + 3^2 + \dots + \mathbf{k}^2 = \underline{\mathbf{k}(\mathbf{k}+1)(2\mathbf{k}+1)}{6}$
Must show:
 $1^2 + 2^2 + 3^2 + \dots + \mathbf{k}^2 + (\mathbf{k}+1)^2 = \underline{(\mathbf{k}+1)(\mathbf{k}+2)(2\mathbf{k}+2+1)}{6} + (\mathbf{k}+1)^2$
 $1^2 + 2^2 + 3^2 + \dots + \mathbf{k}^2 + (\mathbf{k}+1)^2 = \underline{\mathbf{k} (\mathbf{k}+1)(2\mathbf{k}+1)}{6} + (\mathbf{k}+1)^2$
 $= \underline{\mathbf{k} (\mathbf{k}+1)(2\mathbf{k}+1) + 6 (\mathbf{k}+1)^2}{6}$
 $= \underline{(\mathbf{k}+1)}{6} [2 \mathbf{k}^2 + \mathbf{k} + 6\mathbf{k} + 6]$
 $= \underline{(\mathbf{k}+1)}{6} [(2\mathbf{k}+3) (\mathbf{k}+2)]$
 $= \underline{(\mathbf{k}+1)(\mathbf{k}+2)(2\mathbf{k}+2+1)}{6}$

which is the formula for n = k + 1, so $(k+1) \in S$. \therefore s has properties a) & b), so S = n.

	n!	3 ⁿ		n!	3n
n = 1	1	3	n = 5	120	243
n = 2	2	9	n = 6	720	729
n = 3	6	27	n = 7	5040	2187
n = 4	24	81			

Thm: $n! > 3^n$ for $n \ge 7$

Can start induction anywhere Ie. For any $n_0 \in N$, if $S \subset N$ such that a) $n_0 \in S$ b) $(k+1) \in S$ whenever $k \in S \& k \ge n0$ then $S \supset \{n \in N : n \ge n_0\}$

To prove $n! > 3^n$ for $n \ge 7$ use above.

Let $S = \{m \in N: M! > 3^m\}, 7 \in S$ (we checked). Suppose $k! > 3^k$, Must show: $(k+1)! > 3^{k+1}$ We have $k! > 3^k$, Multiply both sides by k + 1. We get $(k + 1)! > 3^{k+1} * (k+1)$ Since $k \ge 7, k + 1 > 3$, so $3^k (k+1) > 3^{k} * 3 = 3^{k+1}$ $\therefore (k + 1) ! > 3^{k+1}$, so $S \supset \{m: m \ge 7\}$

Well Ordering Principle: Every subset of N other than \emptyset has a smallest element.

Assume Well-ordering Principle. **Thm:** If $S \subset N$ such that a) $1 \in S$ b) $(k + 1) \in S$ whenever $k \in S$, then S = N.

Proof:

Let $T = \{ n \in M : n \notin S \}$ ("The complement of S") Show $T \neq \emptyset$, T would have a smallest element, say n_1 , $n \neq 1$, since $1 \in S$. $\therefore (n_1 - 1) \in N$ $n_1 - 1 < n_1 \& n_1$ least element of $T \Rightarrow n1 - 1 \notin T$ $\therefore n_1 - 1 \in S$ By b), $(n_1 - 1) + 1 \in S$, So $n_1 \in S$. In N, a divides b (written a|b) If b = ac for some $c \in N$.

Defn : $p \in N$ is prime if only divisors of p are p & 1, & $p \neq 1$. Prime: 2,3,4,7,11,13

Lemma: If n is a natural number & $n \neq 1$ & n is not a prime number, then n is a product of prime numbers. $180 = 9 \times 10 \times 2 = 3 \times 3 \times 5 \times 2 \times 2$.

Principle of Complete Mathematical Induction.

If $S \subset N$ such that: a) $1 \in S$ b) $(k + 1) \in S$ whenever $\{1, 2, 3, ..., k\} \subset S$, then S = N.

Proof of Lemma:

Let S = { n: Lemma holds for n }. Show S = N. Use Complete Induction. Assume { 1,2,...k } \subset S. Show $(k + 1) \in$ S.

If k + 1 is prime, $k + 1 \in S$. If k + 1 is not prime, then k + 1 = m * n with m, n not 1 or k+1. $m \le k, n \le k, m \in S, n \in S$.

Each of m & n is either prime or product of primes, so k + 1 is the product of the primes that multiply to m and the primes to n. $\therefore k + 1 \in S$, so S = N.

Corollary: If $n \in N$, & $n \neq 1$, then n is divisible by a prime. **Theorem:** There is no largest prime number.

<u>Proof:</u> Let p be a prime number. Multiply all the primes from 2 up to p together and then add 1. Let M = (2*3*5*7*11...p) + 1

M > P, so if M is prime, we're done. M > 1. Suppose M is not prime, By corollary q| M (q divides M) for some prime q.

We want to show: q > P (that finishes the proof).

 $q \neq 2$ since M leaves remainder 1 upon division by 2 For any prime $r \leq p$, M leaves remainder 1 upon division by r. $\therefore q \neq r$ for any $r \leq p$. $\therefore q > p$, finishing the proof.

Twin primes; p, p+2 both primes: Is there a biggest pair of twin primes? – Unknown. 2,3 5,7 11,13 17,19 23,29