Mathematical Induction

Original Notes adopted from September 11, 2001(Week 1)

© P. Rosenthal , MAT246Y1, University of Toronto, Department of Mathematics typed by A. Ku Ong

Natural Numbers

$1,2,3,4,5,6 \ldots n=\{1,2,3,4, \ldots\}$

Principle of Mathematical Induction

If $S \subset n$ such that
a) $1 \in S$
b) $(k+1) \in S$ whenever $k \in S$, then $s=n$.

Eg. Prove: $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\underline{n(n+1)(2 n+1)}$
Let $S=\left\{m: 1^{2}+2^{2}+3^{2}+\ldots+m^{2}=\frac{m(m+1)(2 m+1)}{6}\right.$
To show: $\mathrm{S}=\mathrm{n}$.
By Mathematical Induction, suffices to show
a) $\quad l \in S$
b) b) $(k+1) \in S$ whenever $k \in S$

Is $\mathbf{1} \in \mathbf{S}$? $\quad 1^{2}=\underline{1(1+1)(2+1)}$
6

$$
1=1
$$

Suppose $k \in \mathbf{S}$
$1^{2}+2^{2}+3^{2}+\ldots+k^{2}=\underline{k(k+1)(2 k+1)}$
Must show:

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2} & =\frac{(k+1)(k+2)(2 k+2+1)}{6} \\
1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)}{6}\left[2 k^{2}+k+6 k+6\right] \\
& =\frac{(k+1)}{6}\left[2 k^{2}+7 k+6\right] \\
& =\frac{(k+1)[(2 k+3)(k+2)]}{6} \\
& =\frac{(k+1)(k+2)(2 k+2+1)}{6}
\end{aligned}
$$

which is the formula for $\mathrm{n}=\mathrm{k}+1$, so $(\mathrm{k}+1) \in \mathrm{S} . \therefore \mathrm{s}$ has properties a$) \& \mathrm{~b})$, so $\mathrm{S}=\mathrm{n}$.

	$\mathrm{n}!$	3^{n}		$\mathrm{n}!$	3 n
$\mathrm{n}=1$	1	3	$\mathrm{n}=5$	120	243
$\mathrm{n}=2$	2	9	$\mathrm{n}=6$	720	729
$\mathrm{n}=3$	6	27	$\mathrm{n}=7$	5040	2187
$\mathrm{n}=4$	24	81			

Thm: n ! $>\mathbf{3}^{\mathrm{n}} \quad$ for $\mathrm{n} \geq \mathbf{7}$
Can start induction anywhere Ie.
For any $\mathrm{n}_{0} \in \mathrm{~N}$, if $\mathrm{S} \subset \mathrm{N}$ such that
a) $n_{0} \in S$
b) $(\mathrm{k}+1) \in \mathrm{S}$ whenever $\mathrm{k} \in \mathrm{S} \& \mathrm{k} \geq \mathrm{n} 0$
then $S \supset\left\{n \in N: n \geq n_{0}\right\}$
To prove $n!>3^{n} \quad$ for $n \geq 7$ use above.
Let $S=\left\{\mathrm{m} \in \mathrm{N}: M!>3^{\mathrm{m}}\right\}, 7 \in \mathrm{~S}$ (we checked).
Suppose $k!>3{ }^{k}$, Must show: $(k+1)!>3^{k+1}$
We have $\mathrm{k}!>3{ }^{\mathrm{k}}$, Multiply both sides by $\mathrm{k}+1$.
We get $(k+1)!>3^{k+1} *(k+1)$
Since $k \geq 7, k+1>3$, so
$3^{\mathrm{k}}(\mathrm{k}+1)>3^{\mathrm{k}} * 3=3^{\mathrm{k}+1}$
$\therefore(\mathrm{k}+1)!>3^{\mathrm{k}+1}$, so $\mathrm{S} \supset\{\mathrm{m}: \mathrm{m} \geq 7\}$
Well Ordering Principle: Every subset of N other than \varnothing has a smallest element.
Assume Well-ordering Principle.
Thm: If $\mathrm{S} \subset \mathrm{N}$ such that
a) $1 \in S$
b) $(k+1) \in S$ whenever $k \in S$, then $S=N$.

Proof:
Let $T=\{n \in M: n \notin S\}$ ("The complement of S ")
Show $\mathrm{T} \neq \varnothing$, T would have a smallest element, say n_{1}, $\mathrm{n} \neq 1$, since $1 \in \mathrm{~S}$.
$\therefore\left(\mathrm{n}_{1}-1\right) \in \mathrm{N}$
$\mathrm{n}_{1}-1<\mathrm{n}_{1} \& \mathrm{n}_{1}$ least element of $\mathrm{T} \Rightarrow \mathrm{n} 1-1 \notin \mathrm{~T}$
$\therefore \mathrm{n}_{1}-1 \in \mathrm{~S}$ Byb), $\left(\mathrm{n}_{1}-1\right)+1 \in \mathrm{~S}$, So $\mathrm{n}_{1} \in \mathrm{~S}$.
In N , a divides b (written $\mathrm{a} \mid \mathrm{b}$)
If $b=a c$ for some $c \in N$.

Defn : $\mathrm{p} \in \mathrm{N}$ is prime if only divisors of p are $\mathrm{p} \& 1, \& \mathrm{p} \neq 1$. Prime: $2,3,4,7,11,13$

Lemma: If n is a natural number $\& \mathrm{n} \neq 1 \& \mathrm{n}$ is not a prime number, then n is a product of prime numbers. $180=9 \times 10 \times 2=3 \times 3 \times 5 \times 2 \times 2$.

Principle of Complete Mathematical Induction.

If $\mathrm{S} \subset \mathrm{N}$ such that:
a) $1 \in S$
b) $(k+1) \in S$ whenever $\{1,2,3, \ldots, k\} \subset S$, then $S=N$.

Proof of Lemma:

Let $\mathrm{S}=\{\mathrm{n}$: Lemma holds for n$\}$. Show $\mathrm{S}=\mathrm{N}$. Use Complete Induction.
Assume $\{1,2, \ldots k\} \subset S$. Show $(k+1) \in S$.
If $k+1$ is prime, $k+1 \in S$.
If $\mathrm{k}+1$ is not prime, then $\mathrm{k}+1=\mathrm{m} * \mathrm{n}$ with m , n not 1 or $\mathrm{k}+1$.
$\mathrm{m}<=\mathrm{k}, \mathrm{n}<=\mathrm{k} \quad \mathrm{m} \in \mathrm{S}, \mathrm{n} \in \mathrm{S}$.
Each of $\mathrm{m} \& \mathrm{n}$ is either prime or product of primes, so $\mathrm{k}+1$ is the product of the primes that multiply to m and the primes to $\mathrm{n} . \therefore \mathrm{k}+1 \in \mathrm{~S}$, so $\mathrm{S}=\mathrm{N}$.

Corollary: If $\mathrm{n} \in \mathrm{N}, \& \mathrm{n} \neq 1$, then n is divisible by a prime.
Theorem: There is no largest prime number.
Proof: Let p be a prime number.
Multiply all the primes from 2 up to p together and then add 1.
Let $M=(2 * 3 * 5 * 7 * 11 \ldots p)+1$
$\mathrm{M}>\mathrm{P}$, so if M is prime, we're done.
$M>1$. Suppose M is not prime, By corollary $q \mid M$ (q divides M) for some prime q.
We want to show: $q>P$ (that finishes the proof).
$\mathrm{q} \neq 2$ since M leaves remainder 1 upon division by 2
For any prime $\mathrm{r}<=\mathrm{p}, \mathrm{M}$ leaves remainder 1 upon division by r .
$\therefore \mathrm{q} \neq \mathrm{r}$ for any $\mathrm{r}<=\mathrm{p} . \therefore \mathrm{q}>\mathrm{p}$, finishing the proof.
Twin primes; $\mathrm{p}, \mathrm{p}+2$ both primes: Is there a biggest pair of twin primes? - Unknown.
$2,3 \quad 5,7 \quad 11,13 \quad 17,19 \quad 23,29$

