1. Weak vs strong convergence
Consider the sequence of functions \(f_k(x) = \frac{1}{k} \sin(k \pi x) \), where \(x \in (0, 1) \).

- Show that \(f_k \) is uniformly bounded in \(W^{1,2}((0, 1)). \)
- Show that \(f_k \to 0 \) in \(W^{1,2}((0, 1)). \)
- Show that \(f_k \) does not converge strongly in \(W^{1,2}((0, 1)). \)

2. Issues with a naive approach to the Plateau problem
Let \(\Gamma \subset \mathbb{R}^3 \) be a simple closed curve. Consider the class of functions

\[
\mathcal{F}_\Gamma = \{ u \in W^{1,2}(D^2, \mathbb{R}^3) | u|_{\partial D} \in C^0(\partial D, \mathbb{R}^3) \text{ is a weakly monotone parametrization of } \Gamma \}.
\]

and the energy functional \(E : \mathcal{F}_\Gamma \to \mathbb{R}, \)

\[
E[u] = \frac{1}{2} \int_{D^2} |\nabla u|^2 dx
\]

Let \(\mathcal{G} \) be the Mobius group of the disc,

\[
\mathcal{G} = \left\{ \varphi(z) = e^{i \alpha} \frac{a + z}{1 + \overline{a}z} | \alpha \in \mathbb{R}/2\pi \mathbb{Z}, |a| < 1 \right\}.
\]

- Prove that \(E[u] = E[u \circ \varphi] \) for all \(u \in \mathcal{F}_\Gamma, \varphi \in \mathcal{G}. \)
- Let \(u \in \mathcal{F}_\Gamma. \) Prove that there exists a sequence \(\varphi_k \in \mathcal{G} \) such that \(u \circ \varphi_k \) converges weakly in \(W^{1,2}(D^2, \mathbb{R}^3) \) to a constant map.

3. The \(q \)-Laplacian
Let \(\Omega \subset \mathbb{R}^n \) be a smooth domain, and let \(f : \bar{\Omega} \to \mathbb{R} \) be a smooth function. For \(1 < q < \infty \), the \(q \)-Laplacian is the quasilinear 2nd order elliptic operator defined by

\[
\Delta_q u = \text{div}(|\nabla u|^{q-2} \nabla u).
\]
• Prove the existence of a weak solution of the Dirichlet problem
\[-\Delta q u = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega. \] (0.5)

• Prove the uniqueness of weak solution of (0.5). You may assume \(q \geq 2 \).

• Give an example of a nonsmooth solution of (0.5) for \(q \) and \(\Omega \) and \(f \) (smooth) of your choice.

4. A forth order variational elliptic equation
Let \(\Omega \subset \mathbb{R}^n \) be a smooth domain, and let \(f : \Omega \rightarrow \mathbb{R} \) be a smooth function. Consider the energy functional
\[E[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla^2 u|^2 + fu \right) dx, \] (0.6)
where \(\nabla^2 \) denotes the Hessian, subject to the boundary conditions
\[u = 0 \text{ on } \partial \Omega \quad \text{and} \quad \nabla_n u = 0 \text{ on } \partial \Omega. \] (0.7)

• Suppose \(u \) is a smooth minimizer of \(E \). Prove that \(u \) satisfies the Euler-Lagrange equation
\[-\Delta^2 u = f. \] (0.8)

• Let \(\mathcal{F} = \{ u \in W^{2,2}(\Omega) | u \text{ satisfies (0.7) in the trace sense} \} \) and consider the energy (0.6) as a functional \(E : \mathcal{F} \rightarrow \mathbb{R} \). Prove the existence of a minimizer.

• Prove that any \(u \in \mathcal{F} \) with \(E[u] = \inf_{v \in \mathcal{F}} E[v] \) is a weak solution of (0.8).

• Prove that any \(u \in \mathcal{F} \) with \(E[u] = \inf_{v \in \mathcal{F}} E[v] \) is smooth.

We will randomly select 2 questions, for which you will receive points \(p_1, p_2, p_3 \in \{0, 1, 2, 3\} \) depending on how well you solved them. Let \(s \) be the number of questions that you skipped. The total number of points you receive for this assignment is \(\max(p_1 + p_2 - s, 0) \in \{0, 1, \ldots, 6\} \).