Free boundary flow with surgery and applications
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Mean curvature flow with surgery for closed mean-convex surfaces has been con-
structed by Brendle-Huisken [4] and Kleiner and the author [12]. However, until
recently the construction of a flow with surgery in the setting of mean-convex
surfaces with free boundary seemed inaccessible, since both the approach from [4]
and [12] crucially rely on the noncollapsing result of Andrews [1], which is only
available in the setting without boundary. Recently, we solved this problem for
mean-convex surfaces with free boundary in any strictly convex domain D:

Theorem ([10]). There exists a free boundary flow with surgery starting at any
smooth compact strictly mean-convex free boundary surface My C D.

Moreover, the flow either becomes extinct in finite time or for t — oo converges to a
finite collection of stable connected minimal surfaces with empty or free boundary.

Here, a free boundary flow with surgery is a free boundary (§,H)-flow. In
particular, § > 0 is a small parameter that captures the quality of the surgery necks
and half necks, and H is a triple of curvature scales Hirigger > Hneck > Hinick > 1,
which is used to specify more precisely when and how surgeries are performed.

To prove the theorem we implemented our recent new approach from [9], which
is based on weak solutions rather than a priori estimates for smooth solutions.
Specifically, we study sequences M7 of free boundary (8, H7)-flows, with the same
mean-convex initial condition My C D, where the curvature scales H’ improve
along the sequence. Given any rescaling factors A\; — 0o, we consider the blowup
sequence MJ = Dy, (M’ — X;). We establish a hybrid compactness theorem,

which allows us to pass to a limit of MI , which is smooth near the surgery regions
but potentially singular elsewhere. Moreover, using Edelen’s monotonicty formula
[6] we rule out microscopic surgeries. We then generalize the theory of mean-
convex Brakke flows with free boundary from [7] to our setting of hybrid limits,
and in particular establish multiplicity-one. As a consequence, taking also into
account the recent classification of ancient solutions from [2, 3], we then establish
a canonical neighborhood theorem, which allows us to conclude.
As an application, in joint work with Ketover we prove:

Theorem ([11]). Every strictly convezr 3-ball B with nonnegative Ricci-curvature
contains at least 3 embedded free-boundary minimal disks in the generic case, and
at least 2 solutions even without genericity assumption. Moreover, the area of our
2nd solution is always strictly less than twice the area of the Griiter-Jost solution.

A natural family of examples of 3-balls to illustrate this are the ellipsoids

B2
They contain at least 3 obvious ‘planar’ solutions, which are obtained by intersect-
ing E(a,b, c) with the coordinates planes. On the other hand, for a > 2max(b, ¢)

our theorem produces a nonplanar embedded free-boundary minimal disk ¥(a).
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E(a,b,¢) = {;+y+; < 1} C R3.



Moreover, for a — oo our surfaces 3 (a) converge in the sense of varifolds to the
planar disk {z = 0} x E(b,c¢) C R x E(b, ¢) with multiplicity-two.

To outline our proof, recall that Griiter-Jost [8] already proved the existence of
at least 1 solution. Moreover, by a beautiful degree theory argument of Maximo-
Nunes-Smith [14] for generic metrics the number of solutions is always odd. Hence,
our task is to produce a 2nd solution. To get started, sliding the Griiter-Jost disk a
bit to both sides we can decompose B = B~UZUBT, where Z is a short cylindrical
region and 9B* are smooth strictly mean-convex disks with free-boundary. Using
the free boundary flow with surgery from above, and ideas from our earlier work
with Buzano and Hershkovits [5], we produce an optimal free-boundary foliation
of B, namely a foliation {;},c;_1,1) of B by free-boundary disks, such that the
Griiter-Jost disk sits in the middle of the foliation as g and all other slices have
strictly less area. As an aside, we mention that these smooth foliations are of
independent interest. Using our optimal foliation we can then form a certain two
parameter family {3, ,}. Loosely speaking, this family is constructed by joining
the surfaces X5 and ¥; by a thin half neck. Establishing a half version of the
catenoid estimate from [13], we can suitably open up the half neck to arrange that

sup |Xs | < 2|2
s,t

This guarantees that min-max for our two-parameter family does not simply pro-
duce the Griuter-Jost disk with multiplicity-two, and together with a standard
Lusternik-Schnirelmann argument allows us to conclude.
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