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The min-max method goes back to Birkhoff, who in 1917 proved:

Theorem 1 (Birkhoff [1]). Any closed Riemannian two-sphere contains at least
one closed geodesic.

Loosely speaking, Birkhoff considered sweepouts of the two-sphere by closed
curves, and argued that the longest slice in a sweepout that is pulled tight is
a closed geodesic. There are also higher non-trivial families of curves one can
consider to produce more geodesics:

Theorem 2 (Lusternik-Schnirelmann [9, 4]). Any closed Riemannian two-sphere
contains at least three simple closed geodesics.

In one higher dimension, one can consider sweepouts of three-spheres by two-
spheres, and hope to produce an embedded minimal two-sphere. In 1983, Simon
and Smith carried this out (adapting the more general min-max theory of Almgren
and Pitts to the case of surfaces with fixed topology) and proved:

Theorem 3 (Simon-Smith [10]). Let M be a three-manifold diffeomorphic to S3.
Then M contains an embedded minimal two-sphere.

In analogy with the case of simple closed geodesics on two-spheres, there are
also higher parameter families of two-spheres on three-spheres that one can con-
sider. One might hope that the families detecting the relevant cohomology classes
α, . . . , α4 produce via min-max four distinct minimal two-spheres. The major
difficulty is the phenomenon of multiplicity. Namely, it could happen that the
min-max spheres associated with the second, third and fourth family, just give the
sphere associated to the first family counted with higher integer multiplicities.

Using combined efforts from min-max theory and mean curvature flow we prove:

Theorem 4 (Haslhofer-Ketover [5]). Let M be a three-manifold diffeomorphic
to S3 and endowed with a bumpy metric. Then M contains at least 2 embedded
minimal two-spheres. More precisely, exactly one of the following alternatives
holds:

(1) M contains at least 1 stable embedded minimal two-sphere, and at least 2
embedded minimal two-spheres of index one.

(2) M contains no stable embedded minimal two-sphere, at least 1 embedded
minimal two-sphere Γ1 of index one, and at least 1 embedded minimal
two-sphere Γ2 of index two. In this case, |Γ2| < 2|Γ1|.

We note that White [11] previously proved the existence of at least 2 minimal
two-spheres in the special case that M has positive Ricci curvature.
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A natural family of examples to illustrate Theorem 4 are ellipsoids. Namely,
given a > b > c > d > 0, consider the ellipsoid

E(a, b, c, d) :=

{
x21
a2

+
x22
b2

+
x23
c2

+
x24
d2

= 1

}
⊂ R4.

Observe that E contains at least 4 minimal ‘planar’ two-spheres, which are given
by the intersection with the coordinates hyperplanes {xi = 0}. However, by the
area estimate |Γ2| < 2|Γ1|, if a � b the second minimal two-sphere Γ2(a) ⊂ E
produced by Theorem 4 is not planar. Moreover, as a → ∞, the minimal two-
spheres Γ2(a) converge as varifolds to a minimal two-sphere with multiplicity two.

Let us now sketch the main ideas of the proof of Theorem 4.
If M admits a stable embedded minimal two-sphere, then the manifold is a kind

of dumbbell. Considering 1-parameter sweep-outs of both halves and using [7] we
show that each half contains an unstable two-sphere of index one in its interior.

Let us now consider the case that M does not contain any stable embedded
minimal two-spheres. Using Simon-Smith’s existence theorem (Theorem 3) we
obtain 1 embedded minimal two-sphere Γ1 of index one. Sliding the Simon-Smith
sphere a bit to both sides we can decompose M = D1 ∪ Z ∪ D2 where Z is the
short cylindrical region obtained by sliding the Simon-Smith sphere around, and
D1 and D2 are smooth embedded 3-discs with mean convex boundary. To proceed,
we prove the following general theorem establishing the existence of smooth mean
convex foliations in three-manifolds:

Theorem 5 (Haslhofer-Ketover [5]). Let D ⊂ M3 be a smooth three-disc with
mean convex boundary. Then exactly one of the following alternatives holds true:

(1) There exists an embedded stable minimal two-sphere Γ ⊂ Int(D).
(2) There exists a smooth foliation {Σt}t∈[0,1] of D by mean convex embedded

two-spheres.

Let us first explain how to finish the proof of Theorem 4 using Theorem 5.
Recalling that M = D1∪Z∪D2 and using the foliations of D1 and D2 produced

by Theorem 5 we can build an optimal foliation of M , by which we mean a smooth
foliation {Σt}t∈[−1,1] of M by two-spheres so that the Simon-Smith sphere sits in
the middle of the foliation as Σ0 and all other slices have less area. From the one
parameter family {Σt} we can then form a two parameter family {Σs,t} detecting
α2 and such that

(1) sup
s,t
|Σs,t| < 2|Γ1|.

Roughly speaking Σs,t looks like Σs connected to Σt along a small neck, which
we open up near (s, t) ≈ (0, 0), using the catenoid estimate from [8].

The area bound (1) ensures that min-max for our two-parameter family doesn’t
simply produce Γ1 with multiplicity two. We conclude that there exists an em-
bedded minimal two-sphere Γ2 with |Γ1| < |Γ2| < 2|Γ1| and index two.
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To obtain some intuition for Theorem 5 (which is of independent interest), imag-
ine that the disc D evolves by mean curvature flow. Recall that mean-convexity
is preserved under mean curvature flow. In the simplest possible scenario, the
mean curvature flow of D remains smooth and either becomes extinct in finite
time in a round point, giving the foliation from (2), or converges for t → ∞ to
a minimal embedded two-sphere, giving (1). Of course, in general the situation
is more complicated since the mean curvature flow typically develops local singu-
larities. One way to continue the flow through singularities is given by the level
set method, and in fact our proof shows that case (2) happens if and only if the
level set flow becomes extinct in finite time. The main issue however is that the
foliation produced by the level set flow is in general singular.

To produce a smooth foliation instead of a singular foliation we use mean cur-
vature flow with surgery. Mean curvature flow with surgery in general ambient
manifolds has been constructed first by Brendle-Huisken [2]. However, since we
also need a canonical neighborhood theorem for our application we instead extend
the approach from Haslhofer-Kleiner [6] to the setting of general ambient mani-
folds. We then combine the existence theorem, the canonical neighborhood theo-
rem, and methods from the recent topological application of mean curvature flow
with surgery by Buzano-Haslhofer-Hershkovits [3] to produce the desired smooth
foliation.
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