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12 ROBERT HASLHOFER

H(0,0) < j7%, but such that

(4.5) sup |A| > J.

P(0,0,1)
We can choose coordinates such that the outward normal of K} at
(0,0) is eq41. Furthermore, by [HK13a, App. D] we can assume that
the sequence is admissible, i.e. that for every R < oo some time slice
K{, contains B(0, R), for j sufficiently large.

Claim 4.6. The sequence of mean curvature flows {K7} converges in
the pointed Hausdorff topology to a static halfspace in R™*! x (—oo, 0],
and similarly for their complements.

Proof of Claim 4.6. For B < oo, d > 0let Brg = B((—R+d)ent1, R),
so Bgq is the closed R-ball tangent to the horizontal hyperplane {Zn41 =
d} at the point d e, 1. When R is large, it will take time approximately
Rd for Brga to leave the upper halfspace {Zp41 > 0}. Since 0 € oK}
for all 7, it follows that Br 4 cannot be contained in the interior of K{
for any t € [T, 0], where T ~ Rd. Thus, for large j we can findd; <d
such that B Rr,a; has interior contact with Kg at some point g;, where

(g5, en+1) < d, |lg;ll S v Rd, and moreover lim inf;_,00{gj» €nt1) = 0.

The mean curvature satisfies H(g;,t) < B. Since K satisfies the
a-Andrews condition, there is a closed ball B; with radius at least
"‘TR making exterior contact with Kg at g;. By a simple geometric
calculation, this implies that K has height < £ in the ball B(0,R)
where R’ is comparable to VRd. As d and R are arbitrary, this implies
that for any T' > 0, and any compact subset Y C {zn41 > 0}, for large
j the time slice Ktj is disjoint from Y, for all ¢t > —T.

Finally, observe that for any 7' > 0 and any compact subset ¥ C
{Zn41 < 0}, the time slice K{ contains Y for all t € [T, 0}, and large
4, because K. contains a ball whose forward evolution under MCF
contains Y at any time ¢ € [—T,0]. This proves the claim. O

Finishing the proof of the theorem, by Claim 4.6, admissibility, and
one-sided minimization (see below), we get for every € > 0, every <0
and every ball B(z,r) centered on the hyperplane {Zp+1 = 0}, that

(4.7) lBKf N B(z,r)| < (1+¢€)war™,

for j large enough. Hence, the local regularity theorem for the mean
curvature flow (Theorem 2.14) implies limsup;_,e supponlAl = 0;
this contradicts (4.5).
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MEAN CURVATURE FLOW 13

Exercise 4.8 (One-sided minimization). Use Stokes’ theorem to prove
the following. If {Ky C U}y is a smooth family of mean convex
domains such that {0Ky} foliates U \ Int(Ky), then

(4.9) OK:NV|<|BK'NV|

for every closed domain K' O K; which agrees with K; outside a com-
pact smooth domain V C U. Using this, prove the density bound (4.7).

Our next estimate gives pinching of the curvatures towards positive.

Theorem 4.10 (Convexity estimate [HK13a]). For alle > 0, a > 0,
there exists n = n(e, ) < oo with the following property. If K is an
a-Andrews flow in a parabolic ball P(p,t,nr) centered at a boundary
point p € OK; with H(p,t) <171, then

(4.11) Ai(p,t) > —er L.

The convexity estimate (Theorem 4.10) says that a boundary point
(p,t) in an a-Andrews flow has almost positive definite second funda-
mental form, assuming only that the flow has had a chance to evolve
over a portion of spacetime which is large compared to H~!(p,t). In
particular, ancient a-Andrews flows {K; C R"'}e(_oo.1) (e.g. blowup
limits) are always convex; this is crucial for the analysis of singularities.

Proof of Theorem 4.10. Fix a. The a-Andrews condition implies that
the assertion holds for ¢ = % Let g9 < é be the infimum of the £’s for
which it holds, and suppose towards a contradiction that 9 > 0.

It follows that there is a sequence {K7} of a-Andrews flows, where
for all 7, (0,0) € 0K?, H(0,0) < 1 and K’ is defined in P(0,0,7),
but A;(0,0) — —ep as j — oo. After passing to a subsequence, {K7}
converges smoothly to a mean curvature flow X in the parabolic ball
P(0,0, p), where p = p(a) is the quantity from Theorem 4.2. Note that
for K> we have A;(0,0) = —&o and thus H(0,0) = 1.

By continuity # > £ in P(0,0,7) for some 7 € (0, p). Furthermore
we have '\—h} > —gg everywhere in P(0,0,7). This is because every
(p,t) € OK= N P(0,0,r) is a limit of a sequence {(p;,t;) € dK7} of
boundary points, and for every € > &g, if n = n(g, o), then for large
j, K7 is defined in P(p;,t;,nH(p;,t;)), which implies that the ratio
’\—I}(pj, t;) is bounded below by —e. Thus, in the parabolic ball P(0,0,7),
the ratio % attains a negative minimum —eg at (0, 0). Since A\; < 0 and
An > 0 the Gauss curvature K = A\, is strictly negative. However,
by the equality case of the maximum principle for %, the hypersurface
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