

recoll: Mo = dKo c RMT closed mean convex hypersurface

(mean convex) ·) $K_{t_2} \subset K_{t_1}$ for $t_2 > t_1$

.) $K_{t} = \phi$ for $t \ge T_{ext}$

·) {K+}+=0 is the moximal family of closed sets Starting et Ko dhat satisfies the avoidence principle

 $u(x) = t = 0 \times eok_t$

·) H'Lake is a Brakko flow (with equality)

.) If Ko is x-noncollapsed, then so is Kt for all t=0.

·) { K_t × IR}_{t≥0} is a limit of smooth flows.

Viscosity mean curvature

H(P) := inf { HX(P)

Ve 25 prote (inflet = + 10)

Proof die
$$\left(\frac{Du^{\epsilon}}{\sqrt{z^{2}+|Du^{2}|^{2}}}\right) = -\frac{1}{\sqrt{z^{2}+|Du^{2}|^{2}}}$$
i.e. $N^{\epsilon} = \operatorname{graph}(y^{\epsilon}_{\epsilon}) \operatorname{solishes} \vec{H} = -\frac{1}{\epsilon}e^{\frac{1}{n+2}}$
 $\subset \mathbb{R}^{n+1} \times \mathbb{R}$

 $Z^*, Z_*: N^2 \rightarrow \mathbb{R}, \quad Z^*(x) = \sup_{y \neq |x|} Z(x,y), \quad Z_*(x) = \inf_{y \neq |x|} Z(x,y)$ where $Z(x,y) = \frac{2(x-y,y)}{|x-y|^2}$.

Δ Z + 2 (PlogH, P Z) ≥ 0 =) mex Z is alterned at ∂N E.

Similarly, min Z is abberred at ∂N E.

=) N^{ϵ} is x_{ϵ} -noncollapsed, with liminf $x_{\epsilon} \ge 0 = x(K_0)$ $\epsilon \to 0 = x_{\epsilon} \le x_{\epsilon}$

The class of x-noncollapsed flows is the smallest class of set flows & K+3 which contains:

contained compact levelsed flows with smooth x-moncollapsed initial condition

- ·) confinall smooth x-noncell flows in UIRM+1 open
- ·) is closed under restriction, perobolic reccaling, Housdorff limits?

Lemma: $K^j \xrightarrow{\text{Wallshapsed}} => \partial K^j \rightarrow \partial K$

Rule not true without x-noncoll, e.g. (600) but DKO John

Then (Local curvelure estimate)

$$\forall x > 0 \exists \rho = \rho(x) > 0$$
, $Ce = Ce(x) < \infty$:

If $\forall x$ is an x -noncollapsed flow in $P(p,t,r)$
 $pedk_t$, $H(p,t) \leq r^{-1}$

then Sup $|\mathcal{V}^{\ell}A| \leq C_{\ell} r^{-(\ell+1)}$
 $P(p,t,\ell)$

Ruks - How in

-) $H(p,t) \leq 1$ - I food of definite

=) $H \leq C_0$ in $P(p,t,\rho)$ size

- ·) libre "local How nock inequality"
 - ·) Cor: |VH| \(C(x) \cdot H^2 \) (ased some sine)

i.e. curv. control at a single point, gross curv. control on par. pull of definite size. $H(0,0) \leq j^{-1}$, but such that

$$\sup_{P(0,0,1)} |A| \ge j.$$

We can choose coordinates such that the outward normal of K_0^j at (0,0) is e_{n+1} . Furthermore, by [HK13a, App. D] we can assume that the sequence is admissible, i.e. that for every $R < \infty$ some time slice $K_{t_j}^j$ contains B(0,R), for j sufficiently large.

Claim 4.6. The sequence of mean curvature flows $\{\mathcal{K}^j\}$ converges in the pointed Hausdorff topology to a static halfspace in $\mathbb{R}^{n+1} \times (-\infty, 0]$, and similarly for their complements.

Proof of Claim 4.6. For $R < \infty, d > 0$ let $\bar{B}_{R,d} = \overline{B((-R+d)e_{n+1}, R)}$, so $\bar{B}_{R,d}$ is the closed R-ball tangent to the horizontal hyperplane $\{x_{n+1} = d\}$ at the point de_{n+1} . When R is large, it will take time approximately Rd for $\bar{B}_{R,d}$ to leave the upper halfspace $\{x_{n+1} > 0\}$. Since $0 \in \partial K_0^j$ for all j, it follows that $\bar{B}_{R,d}$ cannot be contained in the interior of K_t^j for any $t \in [-T, 0]$, where $T \simeq Rd$. Thus, for large j we can find $d_j \leq d$ such that \bar{B}_{R,d_j} has interior contact with K_t^j at some point q_j , where $\langle q_j, e_{n+1} \rangle < d$, $||q_j|| \lesssim \sqrt{Rd}$, and moreover $\liminf_{j \to \infty} \langle q_j, e_{n+1} \rangle \geq 0$.

The mean curvature satisfies $H(q_j,t) \leq \frac{n}{R}$. Since K_t^j satisfies the α -Andrews condition, there is a closed ball \bar{B}_j with radius at least $\frac{\alpha R}{n}$ making exterior contact with K_0^j at q_j . By a simple geometric calculation, this implies that K_t^j has height $\lesssim \frac{d}{\alpha}$ in the ball B(0,R') where R' is comparable to \sqrt{Rd} . As d and R are arbitrary, this implies that for any T > 0, and any compact subset $Y \subset \{x_{n+1} > 0\}$, for large j the time slice K_t^j is disjoint from Y, for all $t \geq -T$.

Finally, observe that for any T > 0 and any compact subset $Y \subset \{x_{n+1} < 0\}$, the time slice K_t^j contains Y for all $t \in [-T, 0]$, and large j, because K_{-T}^j contains a ball whose forward evolution under MCF contains Y at any time $t \in [-T, 0]$. This proves the claim.

Finishing the proof of the theorem, by Claim 4.6, admissibility, and one-sided minimization (see below), we get for every $\varepsilon > 0$, every $t \leq 0$ and every ball B(x,r) centered on the hyperplane $\{x_{n+1} = 0\}$, that

$$(4.7) |\partial K_t^j \cap B(x,r)| \le (1+\varepsilon)\omega_n r^n,$$

for j large enough. Hence, the local regularity theorem for the mean curvature flow (Theorem 2.14) implies $\limsup_{j\to\infty}\sup_{P(0,0,1)}|A|=0$; this contradicts (4.5).

The sided minimization

SKt' }tiet mean converst dKt, foliades U) Ind(Kt)

If K2 Ktisclosed domain which agrees with Kt outside VCCU then DKnV/= 10K'nV/

Proof voutormit

V = VF on U\Int(Kt) defined by ontward

unit normal of the folketon diov = H = 0

 $=) |\partial K' \cap V| - |\partial K_{\ell} \cap V| \ge \left| \langle V, V_{\partial K'} \rangle - \left| \langle V, V_{\partial K'} \rangle \right|$

= $(K' \setminus K_t) \cap V$ ≥ 0

In our situation, can take $K' = K_t^j \cup (\overline{B}(x,r) \cap \{x_0 \in \delta\})$

Exercise 4.8 (One-sided minimization). Use Stokes' theorem to prove the following. If $\{K_{t'} \subseteq U\}_{t' \leq t}$ is a smooth family of mean convex domains such that $\{\partial K_{t'}\}$ foliates $U \setminus \operatorname{Int}(K_t)$, then

$$(4.9) |\partial K_t \cap V| \le |\partial K' \cap V|$$

for every closed domain $K' \supseteq K_t$ which agrees with K_t outside a compact smooth domain $V \subseteq U$. Using this, prove the density bound (4.7).

Our next estimate gives pinching of the curvatures towards positive.

Theorem 4.10 (Convexity estimate [HK13a]). For all $\varepsilon > 0$, $\alpha > 0$, there exists $\eta = \eta(\varepsilon, \alpha) < \infty$ with the following property. If K is an α -Andrews flow in a parabolic ball $P(p, t, \eta r)$ centered at a boundary point $p \in \partial K_t$ with $H(p, t) \leq r^{-1}$, then

$$(4.11) \lambda_1(p,t) \ge -\varepsilon r^{-1}.$$

The convexity estimate (Theorem 4.10) says that a boundary point (p,t) in an α -Andrews flow has almost positive definite second fundamental form, assuming only that the flow has had a chance to evolve over a portion of spacetime which is large compared to $H^{-1}(p,t)$. In particular, ancient α -Andrews flows $\{K_t \subset \mathbb{R}^{n+1}\}_{t \in (-\infty,T)}$ (e.g. blowup limits) are always convex; this is crucial for the analysis of singularities.

Proof of Theorem 4.10. Fix α . The α -Andrews condition implies that the assertion holds for $\varepsilon = \frac{1}{\alpha}$. Let $\varepsilon_0 \leq \frac{1}{\alpha}$ be the infimum of the ε 's for which it holds, and suppose towards a contradiction that $\varepsilon_0 > 0$.

It follows that there is a sequence $\{\mathcal{K}^j\}$ of α -Andrews flows, where for all j, $(0,0) \in \partial \mathcal{K}^j$, $H(0,0) \leq 1$ and \mathcal{K}^j is defined in P(0,0,j), but $\lambda_1(0,0) \to -\varepsilon_0$ as $j \to \infty$. After passing to a subsequence, $\{\mathcal{K}^j\}$ converges smoothly to a mean curvature flow \mathcal{K}^{∞} in the parabolic ball $P(0,0,\rho)$, where $\rho = \rho(\alpha)$ is the quantity from Theorem 4.2. Note that for \mathcal{K}^{∞} we have $\lambda_1(0,0) = -\varepsilon_0$ and thus H(0,0) = 1.

By continuity $H > \frac{1}{2}$ in P(0,0,r) for some $r \in (0,\rho)$. Furthermore we have $\frac{\lambda_1}{H} \geq -\varepsilon_0$ everywhere in P(0,0,r). This is because every $(p,t) \in \partial \mathcal{K}^{\infty} \cap P(0,0,r)$ is a limit of a sequence $\{(p_j,t_j) \in \partial \mathcal{K}^j\}$ of boundary points, and for every $\varepsilon > \varepsilon_0$, if $\eta = \eta(\varepsilon,\alpha)$, then for large j, \mathcal{K}^j is defined in $P(p_j,t_j,\eta H^{-1}(p_j,t_j))$, which implies that the ratio $\frac{\lambda_1}{H}(p_j,t_j)$ is bounded below by $-\varepsilon$. Thus, in the parabolic ball P(0,0,r), the ratio $\frac{\lambda_1}{H}$ attains a negative minimum $-\varepsilon_0$ at (0,0). Since $\lambda_1 < 0$ and $\lambda_n > 0$ the Gauss curvature $K = \lambda_1 \lambda_n$ is strictly negative. However, by the equality case of the maximum principle for $\frac{\lambda_1}{H}$, the hypersurface

Regularity & Structure Streety for mean conva MCF (I)
(White, Huisben-Sinestvari, H-Keiner)

Local curvature estimate $\forall x>0 \exists p>0, Ce<\infty$: $\forall x$ -noncollapsed flow in P(p,t,r), $H(p,t) \leq r^{-1}$ = $\sum \sup_{P(p,t,er)} |P(A)| \leq Ce^{r-1-e}$

Convexity estimate $\forall x, \varepsilon > 0 \exists \eta < \infty$: $\forall x - \text{noncollapsed flow in P(p, t, \eta r), H(p, t) } \leq r^{-1}$ $\Rightarrow \frac{\lambda_1}{H} \forall t \geq -\varepsilon$.

Global curvature estimate $\forall x>0, \Lambda<\infty$ $\exists \eta, Ce<\infty$: $\forall x \sim \text{noncollapsed flow in } P(p,t,\eta r), H(p,t) \leq r^{-1}$ $\Rightarrow \text{Sup } | \nabla^{e}A| \leq C_{e}r^{-1-e}$ $P(p,t,\Lambda r)$

H(0,0)=

(pert of) nouflot convex

Max-Planck-Institut für Mathematik	
Singularitées/high cur valure régions	Sing
TX x-noncollapsed flow	٣
Blowup sequence 1x8 obtained by povabolic	•
Blowup sequence Md obtained by perabolic rescaling (p,t) H) (2j(p-pi), 2j(t-ti))	
=> M/8 -> 7/2 = limit flow	
trongent flow = Cimit flow in special cross where (Pitj) is fixed.	
Ex tangent flow at (psing, tsing)	

round shrinking cylinder

translating boul

Note: The All limit flows are interpretations:

- noncollapsed, arcient, defined, on IR" x (-90)

Structure than for ancient x-noncollapsed flows 72 ancient x-noncollapsed flow in R"+1 Ictoo, tool extinction $T := \sup\{t : K_t \neq \beta\} \in (-\infty, +\infty] \text{ extinction time.}$ Then: (1) MARTKETS is smooth; (2) TX has convex time slices (3) K is either a static helfspace, or it has strictly position H > 0 and sweeps out all space, i.e. U Kt = IRⁿ⁺¹ Furthermore, if K is backwardly selfsimilar (eg a tongent flow) then it is either (i) a static halfspace #

or (ii) a round shvinking sphere of (iii) a round shvinking cylinder of

Max-Planck-Institut für Mathematik troof (1) pedKt, YCT-t $\exists p' \in \partial K_{t'}, t' \in [t, t+\epsilon]$ with $|p-p'| \neq d(p, K_{t+\epsilon})$ K_{t+2} and $H(p',t') \leq \frac{d(p,K_{t+2})}{2}$ glob curvest centered as (p',t') = $H(p,t) \in C(x,d(p,K_{t+2}))$ (2) Convexity estimate => $\frac{\lambda_1}{H} \ge 0$. =) DK+ has positive semidefinite 2 ad fundamental form Only one connected component => convex.

(3) H = 0 at some (p,t) =) Static halfspace loc. curvest x-noncell (3) Short case: H > 0. as in (2) =) sweeps all coll space.

Moreover: becken self-similar

=) $t = -\frac{1}{2}$ slice setisfies $H + \langle x, r \rangle = 0$ convain=) $|A| \leq H \leq |x|$ grows at most one sided minimization =) $|\partial K_1 \cap B_r| \leq C_r^n$ Huichen's chassification =) $|\partial K_1 \cap B_r| \leq C_r^n$

Size of the singular set

MX a-noncollapsed flow

S':= & (p,t) €d %: Plawnot smooth in a few is smooth

C (R"x /R)
Space-time

d((x1,t1), (x2,t2)) := max(|x1-x2|,|t1+t2|1/2)

dim = Housdorff dim wrt d
eg dim (IRn+1 x IR) = n+3

Hartiel regularity thim

dims = n-1.

Ex

OlimS = n-1

Proof to curve Str. think Huisben's mon. for mule -) tongent flows; static flother christ sphere or cyl.

loc.curv.es) => N={(p,t)EDK: no Lang. flowed (p,t)}

If dien, S' > n-1 =) I tengent flow with days son