Differential Topology - Problem Set 4 (due: Nov 17)

Robert Haslhofer

1. Normal bundle

Let $M^{m} \subset \mathbb{R}^{n}$ be a smooth embedded submanifold. Consider the normal bundle $N M:=\left\{(p, v) \in M \times \mathbb{R}^{n} \mid v \perp T_{p} M\right\}$. Prove that $N M$ is a smooth vectorbundle of rank $n-m$ and that $\left.T \mathbb{R}^{n}\right|_{M}$ is isomorphic to $T M \oplus N M$.

2. Tubular neighborhoods and nearest neighbor projection

Let $M^{m} \subset \mathbb{R}^{n}$ be a smooth compact embedded submanifold, and consider the ε neighborhood $M_{\varepsilon}:=\left\{x \in \mathbb{R}^{n} \mid d(x, M)<\varepsilon\right\}$. For $\varepsilon>0$ small enough, show that $(p, v) \mapsto p+v$ maps the ε-neighborhood of $M \times\{0\}$ in $N M$ diffeomorphically onto M_{ε}. Moreover, considering the projection $\pi: M_{\varepsilon} \rightarrow M$ defined by $\pi(p+v)=p$, show that $\pi(p+v)$ is closer to $p+v$ than any other point of M.

3. Differential forms on S^{1}

Let $\omega \in \Omega\left(S^{1}\right)$. Prove that $\omega=d f$ for some $f \in C^{\infty}\left(S^{1}\right)$ if and only if $\int_{S^{1}} \omega=0$. (Hint: Let $\pi: \mathbb{R} \rightarrow S^{1}, \pi(t)=(\cos t, \sin t)$ and consider the pullback $\pi^{*} \omega$. Think about under what condition the function $g(t):=\int_{0}^{t} \pi^{*} \omega$ is 2π-periodic.)

4. Volume form on S^{n}

Let $\iota: S^{n} \rightarrow \mathbb{R}^{n+1}$ be the usual inclusion, and let $\omega \in \Omega^{n}\left(S^{n}\right)$ be given by

$$
\omega=\iota^{*} \sum_{j=1}^{n+1}(-1)^{j-1} x^{j} d x^{1} \wedge \cdots \wedge d x^{j-1} \wedge d x^{j+1} \wedge \cdots \wedge d x^{n+1}
$$

Show that ω is the standard volume form on S^{n}, i.e. show that $\omega_{p}\left(v_{1}, \ldots, v_{n}\right)=1$ for any positively oriented orthonormal basis $v_{1}, \ldots, v_{n} \in T_{p} S^{n}$ at any $p \in S^{n}$.

Please write up (preferably using LaTeX) your solutions in a clear and concise way. Please hand in your work by the deadline (late submissions will not be accepted).

