Differential Topology - Problem Set 2 (due: Oct 13)

Robert Haslhofer

1. Tangent space of graphs

Let $F: M \to N$ be a smooth map between smooth manifolds. Consider its graph

$$\Gamma := \{ (x, y) \in M \times N \,|\, F(x) = y \}.$$

Show that Γ is a smooth manifold, and that for any $(x, y) \in \Gamma$ the tangent space

$$T_{(x,y)}\Gamma \subset T_xM \times T_yN$$

is equal to the graph of the linear map $dF_x: T_x M \to T_y N$.

2. Tangent bundles of spheres

For n = 1, 3 and 7 prove that TS^n is diffeomorphic to $S^n \times \mathbb{R}^n$. (Hint: Try to find n smooth vector fields that are linearly independent at every point. To do so it is useful to consider complex numbers, quaternions and octonions, respectively.)

3. Embedding the projective plane in \mathbb{R}^4

Prove that $\Phi : \mathbb{RP}^2 \to \mathbb{R}^4$, defined by

$$\Phi([x:y:z]) = \frac{1}{x^2 + y^2 + z^2} (xy, xz, yz, x^2 - y^2),$$

is an embedding of \mathbb{RP}^2 into \mathbb{R}^4 . (Hint: It may be useful to figure out first at which points the map $\varphi : \mathbb{RP}^2 \to \mathbb{R}^3$, defined by

$$\varphi([x:y:z]) = \frac{1}{x^2 + y^2 + z^2} (xy, xz, yz),$$

fails to be an immersion.)

4. Flows and diffeomorphisms

Let M be a connected smooth manifold. Prove that the diffeomorphism group of M acts transitively on M, i.e. prove that for any $p, q \in M$ there exists a diffeomorphism $F: M \to M$ such that F(p) = q. (Hint: first show this for open balls in Euclidean space by constructing a suitable vectorfield and considering its flow.)

Please write up (preferably using LaTeX) your solutions in a clear and concise way. Please hand in your work by the deadline (late submissions will not be accepted).