Practice Problems (Term Test from last year)

1. Exterior Lebesgue measure
 i. What is the definition of the exterior Lebesgue measure?

 ii. Let $C \subseteq \mathbb{R}$ be the Cantor set, $\mathbb{Q} \subseteq \mathbb{R}$ the rational numbers, and $[1, 43] \subseteq \mathbb{R}$ the closed interval of all real numbers between 1 and 43. Compute $m_*(C \cup \mathbb{Q} \cup [1, 43])$.

2. Lebesgue measurability and Lebesgue measure

 For any set $A \subseteq \mathbb{R}$ we consider the set $A' := \{-x \mid x \in A\}$, which is obtained by reflecting A across the origin.

 i. Prove that A is measurable if and only if A' is measurable.

 ii. Assume now that A is measurable (by the first part this implies that A' is also measurable). Prove that $m(A) = m(A')$.

3. Borel sets

 i. What is the definition of a G_δ set?

 ii. Answer with yes or no: The unit cube $[0, 1]^2 \subseteq \mathbb{R}^2$ is open? closed? F_σ? G_δ?

4. Topological smallness vs. measure theoretic smallness

 A subset $A \subseteq \mathbb{R}$ is called nowhere dense if the interior of its closure is empty.

 i. Prove or disprove: If $m_*(A) = 0$, then A is nowhere dense.

 ii. Prove or disprove: If A is nowhere dense, then $m_*(A) = 0$.