PDEII, possible questions for quiz \# 2, spring 2008,

1. Suppose that U is a bounded open subset of \mathbb{R}^{n}, and suppose that $1 \leq p<n$. Give an example of a sequence of functions $\left\{u_{k}\right\} \subset W^{1, p}(U)$ such that

$$
\left\|u_{k}\right\|_{W^{1, p}(U)} \leq C \quad \text { but no subsequence converges to any limit in } L^{p^{*}}(U)
$$

where p^{*} is the Sobolev exponent $p^{*}=\frac{n p}{n-p}$.
(Hint: look for a sequence such that $u_{k} \rightarrow 0$ a.e. but $\left\|u_{k}\right\|_{L^{p^{*}}}$ is a constant independent of k.)
2. Give an example of a sequence of radial functions $u_{k} \in W^{1, p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p<n$ such that

$$
\left\|u_{k}\right\|_{W^{1, p}(U)} \leq C \quad \text { but no subsequence converges to any limit in } L^{p}\left(\mathbb{R}^{n}\right) .
$$

(Similar hint to above.)
3. Let U be the unit ball in \mathbb{R}^{n}, and let p be a number such that $1 \leq p<\infty$. Show by example that there exists a sequence of functions $\left\{u_{k}\right\} \subset W^{1, p}(U)$ such that
(a) $\frac{\partial u_{k}}{\partial \nu}=0$ on ∂U (in particular, each u_{k} should be smooth enough that $\frac{\partial u_{k}}{\partial \nu}$ is well-defined)
(b) The sequence u_{k} converges in $W^{1, p}(U)$ to a limit u; and
(c) $\frac{\partial u}{\partial \nu}$ is well-defined and does not identically vanish on ∂U.

This shows that on cannot hope to minimize any functional in a set of the form $\mathcal{A}:=\{u \in$ $H^{1}(U): \frac{\partial u}{\partial \nu}=0$ on $\left.\partial U\right\}$. Indeed, we do not know how to make sense of $\frac{\partial u}{\partial \nu}$ for a general function $u \in H^{1}(U)$, since we have not established anything analogous to the trace theorem for $\frac{\partial u}{\partial \nu}$.
If I ask this question on a quiz, I will only ask you to write down the answer, but not to check in detail that the examples you give have the desired properties. (But you should write down a correct answer!)
4. Prove the following Poincaré type inequality:

If $U \subset \mathbb{R}^{n}$ is a bounded open set with smoooth boundary, then there exists a constant C (depending on the domain U) such that

$$
\|u\|_{L^{2}(U)} \leq C\left(\|D u\|_{L^{2}(U)}+\|T u\|_{L^{2}(\partial U)}\right)
$$

where $T u \in L^{2}(\partial U)$ denotes the trace of u.
(This was needed in a previous homework problem. In your solution, feel free to write u instead of $T u$ for simplicity, when referring to the boundary values of u.)
5. Suppose that H and \tilde{H} are Hilbert spaces, and that $A: H \rightarrow \tilde{H}$ is a bounded linear operator. Prove that if $u_{k} \rightharpoonup u$ weakly in H, then $A u_{k} \rightharpoonup A u$ weakly in \tilde{H}.
(This implies in particular that if $u_{k} \rightharpoonup u$ weakly in $H^{1}(U)$ then $T u_{k} \rightharpoonup T u$ weakly in $L^{2}(\partial U)$, where $T w$ denotes the trace of w. This also was needed for a previous homework problem. For this, you may need to recall the definition of the adjoint A^{*} of a bounded linear operator $A: H \rightarrow \tilde{H}$.)
6. Evans chapter 7 problem 1 .
7. Evans chapter 7 problem 2.

