MAT 1061: notes on Nonlinear Ground States

We study solutions ${ }^{1} u \in H^{1}\left(\mathbb{R}^{n}\right)$ of the equation

$$
\begin{equation*}
-\Delta u+\lambda u-|u|^{p-2} u=0 \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

We will restrict our attention to dimensions $n \geq 3$; similar results hold in dimensions $n=1,2$, with small modifications.

We will study (1) using variational methods. Thus we define the functional

$$
\begin{equation*}
I[u]:=\int_{\mathbb{R}^{n}} \frac{|D u|^{2}}{2}+\lambda \frac{|u|^{2}}{2}-\frac{|u|^{p}}{p} d x . \tag{2}
\end{equation*}
$$

It will be useful to give a name to each of the 3 terms that make up I. Thus we use the notation I_{D} for the Dirichlet energy,

$$
I_{D}[u]=\int_{\mathbb{R}^{n}} \frac{|D u|^{2}}{2}
$$

and for $q \geq 1$ we write

$$
I_{q}[u]:=\int_{\mathbb{R}^{n}} \frac{|u|^{q}}{q} d x
$$

so that $I=I_{D}+\lambda I_{2}-I_{p}$.
We will first establish existence of solutions of (1) by a variational argument. We will then go on to establish some interesting properties of the specific solutions found by our variational technique.

1. existence

In this section we prove
Theorem 1. For $\Lambda>0$, define

$$
\mathcal{A}_{\Lambda}:=\left\{v \in H^{1}\left(\mathbb{R}^{n}\right): \lambda I_{2}[v]-I_{p}[v]=-\Lambda\right\} .
$$

Then for every $\Lambda>0$, there exists $u \in \mathcal{A}_{\Lambda}$ such that u is positive and radial, and

$$
I_{D}[u]=\min _{v \in \mathcal{A}_{\Lambda}} I_{D}[v] .
$$

Moreover, there exists a number Λ_{*} for which every minimizer of I_{D} in $\mathcal{A}_{\Lambda_{*}}$ is a solution of (1) (including in particular the minimizer found above.)

To say that u is radial means that there exists some function $\tilde{u}:[0, \infty) \rightarrow[0, \infty)$ such that $u(x)=\tilde{u}(|x|)$ a.e..

[^0]1.1. some lemmas. We will need the following deep fact from analysis, which we will accept without proof:

Proposition 1 (Symmetrization decreases the Dirichlet energy). Suppose that $u \in$ $L^{p}\left(\mathbb{R}^{n} ; \mathbb{C}\right)$ for some p, and that $D u \in L^{2}\left(\mathbb{R}^{n}\right)$. Define the Schwarz symmetrization of u to be the unique nonnegative, radial function in $L^{2}\left(\mathbb{R}^{n}\right)$, denoted u^{*}, with the property that

$$
\mathcal{L}^{n}\left(\left\{x \in \mathbb{R}^{n}: u^{*}(x) \geq \lambda\right\}\right)=\mathcal{L}^{n}\left(\left\{x \in \mathbb{R}^{n}: u(x) \geq \lambda\right\}\right)
$$

for every $\lambda \in \mathbb{R}$, and as a result

$$
\left\|u^{*}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}=\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)}
$$

for every $q \in[1, \infty]$ (where it is possible that both sides equal $+\infty$ for some q). Then $D u^{*} \in L^{2}$, and

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|D u^{*}\right|^{2} d x \leq \int_{\mathbb{R}^{n}}|D u|^{2} d x \tag{3}
\end{equation*}
$$

Remarks about the proof.
Next, we have the following
Lemma 1. Let $H_{r a d}^{1}\left(\mathbb{R}^{n}\right):=\left\{v \in H^{1}\left(\mathbb{R}^{n}\right): v\right.$ is radial $\}$. Then $H_{r a d}^{1}\left(\mathbb{R}^{n}\right)$ is compactly embedded in $L^{p}\left(\mathbb{R}^{n}\right)$ for every $p \in\left(2,2^{*}\right)$.

The lemma is interesting because Rellich's compactness theorem fails on \mathbb{R}^{n}. For example, if $u \in H^{1}\left(\mathbb{R}^{n}\right)$ is any nonzero function and x_{k} is any sequence of points tending to ∞, then the sequence $u_{k}(x):=u\left(x-x_{k}\right)$ is bounded in $H^{1}\left(\mathbb{R}^{n}\right)$ but does not have any convergent sequence in $L^{p}\left(\mathbb{R}^{n}\right)$ for any p.

Proof. 1. We first claim that if $v \in H_{r a d}^{1}\left(\mathbb{R}^{n}\right)$, then

$$
|x|^{\frac{n-1}{2}}|v(x)| \leq C\|v\|_{L^{2}}\|D v\|_{L^{2}} \quad \text { for } \text { a.e. } x \in \mathbb{R}^{n} \text {. }
$$

To prove this, note if $v \in H_{r a d}^{1}\left(\mathbb{R}^{n}\right)$ is smooth with compact support, then

$$
\begin{aligned}
r^{n-1}|v(r)|^{2} & =-\int_{r}^{\infty} \frac{d}{d s}\left(s^{n-1}|v(s)|^{2}\right) d s \\
& \leq-2 \int_{r}^{\infty} s^{n-1} v(s) v^{\prime}(s) d s \\
& \leq C\left(\int_{r}^{\infty} s^{n-1}|v(s)|^{2} d s\right)^{1 / 2}\left(\int_{r}^{\infty} s^{n-1}\left|v^{\prime}(s)\right|^{2} d s\right)^{1 / 2} \\
& \leq C\|v\|_{L^{2}}\|D v\|_{L^{2}} .
\end{aligned}
$$

Since $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $H^{1}\left(\mathbb{R}^{n}\right)$, it follows that the claim holds for all $v \in H_{r a d}^{1}$.
2. Now suppose that $\left\{u_{k}\right\} \subset H^{1}\left(\mathbb{R}^{n}\right)$ is a sequence such that $\left\|u_{k}\right\|_{H^{1}} \leq C$. After passing to a subsequence, we may assume that there exists some $u \in H^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
u_{k} \rightharpoonup u \text { weakly in } L^{2}\left(\mathbb{R}^{n}\right), \quad D u_{k} \rightharpoonup D u \text { weakly in } L^{2}\left(\mathbb{R}^{n}\right)
$$

Note that $\|u\|_{H^{1}} \leq \sup _{k}\left\|u_{k}\right\|_{H^{1}} \leq C$ To complete the proof we will show that for $p \in\left(2,2^{*}\right)$ and arbitrary $\varepsilon>0$, there exists some $\ell=\ell(\varepsilon)$ such that $\left\|u_{k}-u\right\|_{L^{p}}<\varepsilon$ for all $k \geq \ell$. Then for R to be chosen,

$$
\begin{aligned}
\left\|u-u_{k}\right\|_{L^{p}} & =\left\|u-u_{k}\right\|_{L^{p}\left(B_{R}\right)}+\left\|u-u_{k}\right\|_{L^{p}\left(\mathbb{R}^{n} \backslash B_{R}\right)} \\
& \leq\left\|u-u_{k}\right\|_{L^{p}\left(B_{R}\right)}+\left\|u-u_{k}\right\|_{L^{2}\left(\mathbb{R}^{n} \backslash B_{R}\right)}^{2 / p}\left\|u-u_{k}\right\|_{L^{\infty}\left(\mathbb{R}^{n} \backslash B_{R}\right)}^{(p-2) / p}
\end{aligned}
$$

Clearly $\left\|u-u_{k}\right\|_{L^{2}\left(\mathbb{R}^{n} \backslash B_{R}\right)}^{2 / p} \leq C$, and in view of Step 1, if $v \in H_{r a d}^{1}$ then

$$
\|v\|_{L^{\infty}\left(\mathbb{R}^{n} \backslash B_{R}\right)} \leq C R^{\frac{1-n}{2}}\|v\|_{H^{1}}
$$

Thus by taking R large enough, we can arrange that

$$
\left\|u-u_{k}\right\|_{L^{2}\left(\mathbb{R}^{n} \backslash B_{R}\right)}^{2 / p}\left\|u-u_{k}\right\|_{L^{\infty}\left(\mathbb{R}^{n} \backslash B_{R}\right)}^{(p-2) / p} \leq \frac{\varepsilon}{2} .
$$

Having fixed R, we note that since B_{R} is bounded, Rellich's Compactness Theorem and the weak convergence $u_{k} \rightharpoonup u$ imply that $u_{k} \rightarrow u$ in $L^{p}\left(B_{R}\right)$ for $p<2^{*}$. Thus there exists some ℓ such that $\left\|u-u_{k}\right\|_{L^{p}\left(B_{R}\right)}<\frac{\varepsilon}{2}$ if $k \geq \ell$.
1.2. proof of Theorem 1. Using the above results, we present the proof of the theorem.
proof of Theorem 1. 1. Fix $\Lambda>0$, and let $\left\{v_{k}\right\} \subset \mathcal{A}_{\Lambda}$ be a sequence such that

$$
I_{D}\left[v_{k}\right] \rightarrow \inf _{\mathcal{A}_{\Lambda}} I_{D}
$$

Let u_{k} denote the Schwarz symmetrization v_{k}^{*} of v_{k}.
It is clear that $u_{k} \in \mathcal{A}_{\Lambda}$, and it follows from Proposition 1 that $I_{D}\left[u_{k}\right] \rightarrow \inf _{\mathcal{A}_{\Lambda}} I_{D}$.
Next, note that for every $v \in \mathcal{A}_{\Lambda}$,

$$
\frac{\lambda}{2}\|v\|_{2}^{2}=\frac{1}{p}\|v\|_{p}^{p}-\Lambda \leq \frac{1}{p}\|v\|_{p}^{p} \leq \frac{1}{p}\left(\|v\|_{2}^{\theta}\|D v\|_{2}^{1-\theta}\right)^{p}
$$

for θ as defined in (7), see Lemma 2 below. Upon rearranging we find that

$$
\|v\|_{2}^{2-\theta p} \leq C\|D v\|_{2}^{(1-\theta) p} .
$$

The definition of θ implies that $2-\theta p=2 p \frac{1-\theta}{2^{*}}>0$, so it follows that $\|v\|_{2} \leq C\|D v\|_{2}^{\alpha}$ for some $\alpha>0$, for $v \in \mathcal{A}_{\Lambda}$.

It follows that $\left\{u_{k}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{n}\right)$.
2. Next, in view of Lemma 1, we can pass to a subsequence (still labelled $\left\{u_{k}\right\}$) such that

$$
\begin{equation*}
u_{k} \rightharpoonup u \text { weakly in } L^{2}, \quad D u_{k} \rightharpoonup D u \text { weakly in } L^{2}, \text { and } \quad u_{k} \rightarrow u \text { strongly in } L^{p} . \tag{4}
\end{equation*}
$$

Upon passing to a further subsequence if necessary, we can also assume that $u_{k} \rightarrow u$ a.e. in \mathbb{R}^{n}. Each u_{k} is nonnegative and radial, so the same properties are inherited by u.
3. We next show that $u \in \mathcal{A}_{\Lambda}$ It follows from (4) that

$$
\begin{aligned}
\int|u|^{2} & \leq \liminf _{k} \int\left|u_{k}\right|^{2} \\
\int|D u|^{2} & \leq \liminf _{k} \int\left|D u_{k}\right|^{2}=\inf _{\mathcal{A}_{\Lambda}} I_{D} \\
\int|u|^{p} & =\lim _{k} \int\left|u_{k}\right|^{p} .
\end{aligned}
$$

Since each u_{k} belongs to \mathcal{A}_{Λ}, we deduce that

$$
-\lambda I_{2}[u]+I_{p}[u] \geq \underset{k}{\liminf }\left(-\lambda I_{2}\left[u_{k}\right]+I_{p}\left[u_{k}\right]\right)=\Lambda
$$

Suppose toward a contradiction that strict inequality holds. Then there exists some $a \in(0,1)$ such that $a u \in \mathcal{A}_{\Lambda}$, and clearly $I_{D}[a u]=a^{2} I_{D}[u]<\inf _{\mathcal{A}_{\Lambda}} I_{D}$, which is impossible. Thus $u \in \mathcal{A}_{\Lambda}$.

We conclude that u minimizes I_{D} in \mathcal{A}_{Λ}, as required.
4. next, we know that the Euler-Lagrange equation for the constrained variational problem satisfied by u is

$$
-\Delta u=\alpha\left(-\lambda u+|u|^{p-2} u\right)
$$

where α is a Lagrange multiplier. Then Lemma 3 proved below (see in particular (20)) implies that there exists a constant $c_{n, p}$ depending only on n and p, such that

$$
\int|u|^{p} d x=c_{n, p} \lambda \int|u|^{2} d x .
$$

Since $u \in \mathcal{A}_{\Lambda}$, it follows that

$$
\begin{equation*}
\Lambda=-\frac{\lambda}{2} \int|u|^{2}+\frac{1}{p} \int|u|^{p}=\left(\frac{c_{n, p}}{p}-\frac{1}{2}\right) \lambda \int|u|^{2}=\left(\frac{1}{p}-\frac{1}{2 c_{n, p}}\right) \int|u|^{p} . \tag{5}
\end{equation*}
$$

In addition, Lemma 3 also implies that

$$
\alpha=\frac{\int|D u|^{2}}{\int\left(-\lambda|u|^{2}+|u|^{p}\right)} .
$$

Then it follows from (5) that the Lagrange multiplier α depends only on Λ (even if there is more than one minimizer in \mathcal{A}_{Λ}). Thus we will write $\alpha(\Lambda)$ to indicate the unique Lagrange multiplier associated with minimizing in \mathcal{A}_{Λ}.

Finally, we wish to adjust Λ so that the corersponding Lagrange mutliplier $\alpha(\Lambda)$ equals 1 . To do this, let us define a map $\delta_{a}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow H^{1}\left(\mathbb{R}^{n}\right)$ by $\delta_{a} u(x)=u(a x)$, $a>0$. Then by a change of variables,

$$
\left\|\delta_{a} u\right\|_{L^{q}}^{q}=a^{-n}\|u\|_{L^{q}}^{q} \quad I_{D}\left[\delta_{a} u\right]=a^{2-n} I_{D}[u]
$$

for every $u \in H^{1}\left(\mathbb{R}^{n}\right)$ and every $a>0$. It is clear that δ_{a} is invertible, and it follows that δ_{a} is a bijection of \mathcal{A}_{Λ} onto $\mathcal{A}_{a^{-n} \Lambda}$, and that $\inf _{\mathcal{A}_{a^{-n} \Lambda}} I_{D}=\alpha^{2-n} \inf _{\mathcal{A}_{\Lambda}} I_{D}$. We conclude that

$$
\alpha\left(a^{-n} \Lambda\right)=a^{2} \alpha(\Lambda) .
$$

This implies that there is a unique Λ_{*} such that $\alpha\left(\Lambda_{*}\right)=1$, which completes the proof.

2. A DIFFERENT EXISTENCE PROOF

In this section we give an alternative argument in which we again find solutions of (1) via a different variational problem.

First we recall
Lemma 2. If $v \in W^{1, q}\left(\mathbb{R}^{n}\right)$ for $q<n$, then $v \in L^{s}\left(\mathbb{R}^{n}\right)$ for all $s \in\left(q, q^{*}\right)$, and in addition

$$
\begin{equation*}
\|v\|_{L^{s}\left(\mathbb{R}^{n}\right)} \leq C\|v\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{\theta}\|D v\|_{L^{q}\left(\mathbb{R}^{n}\right)}^{1-\theta} \tag{6}
\end{equation*}
$$

where θ is defined by

$$
\begin{equation*}
\frac{1}{s}=\frac{\theta}{q}+\frac{1-\theta}{q^{*}} . \tag{7}
\end{equation*}
$$

The proof is an exercise. Inequality (6) is sometimes called the Sobolev-NirenbergGagliardo inequality. It implies that if we define

$$
G[v]:=\frac{\|v\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{\theta}\|D v\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{1-\theta}}{\|v\|_{L^{p}\left(\mathbb{R}^{n}\right)}}
$$

then $G[v] \geq C^{-1}$ for every $v \in H^{1}\left(\mathbb{R}^{n}\right) \backslash\{0\}$. (Here p is the same number appearing in (1), so that $2<p<2^{*}$, and θ is as in Lemma 6.)

The next theorem shows that at least some solutions of (1) minimize $G[\cdot]$, which means that they are extremal for the Sobolev-Nirenberg-Gagliardo inequality.
Theorem 2. There exists a nonnegative radial function $u \in H^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
G[u] \leq G[v] \quad \text { for all } v \in H^{1}\left(\mathbb{R}^{n}\right) \backslash\{0\} . \tag{8}
\end{equation*}
$$

Moreover, if u is any minimizer of G, then

$$
\begin{equation*}
-\alpha \Delta u+\beta u-\gamma|u|^{p-2} u=0 \tag{9}
\end{equation*}
$$

for positive constants α, β, γ. Finally, there exists a minimizer of G that solves (1).
Proof. 1. First, it is easy to check that for any $v \in H^{1}\left(\mathbb{R}^{n}\right)$ and any $a, b>0$, if we define $v_{a, b}(x):=b v(a x)$, then $G\left[v_{a, b}\right]=G[v]$. Indeed, this follows from noting that

$$
\left\|v_{a, b}\right\|_{L^{q}}=b a^{-\frac{n}{q}}\|v\|_{L^{q}} \quad \text { for every } q, \quad\left\|D v_{a, b}\right\|_{L^{2}}=b a^{1-\frac{n}{2}}\|D v\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

together with some arithmetic. These identities also imply that, given any nonzero $v \in H^{1}\left(\mathbb{R}^{n}\right)$, we can choose a, b such that $\left\|v_{a, b}\right\|_{L^{2}}=\left\|D v_{a, b}\right\|_{L^{2}}=1$.
2. let $\left\{v_{k}\right\} \subset H^{1}\left(\mathbb{R}^{n}\right) \backslash\{0\}$ be a sequence such that

$$
G\left[v_{k}\right] \rightarrow \inf _{H^{1} \backslash\{0\}} G .
$$

For each k, we let $u_{k}:=\left(v_{k}^{*}\right)_{a, b}$, for a, b chosen so that $\left\|u_{k}\right\|_{L^{2}}=\left\|D u_{k}\right\|_{L^{2}}=1$. (That is, u_{k} is obtained from v_{k} by first symmetrizing as in Proposition 1, and then by rescaling as in Step 1 above.) It follows that $G\left[u_{k}\right]=G\left[v_{k}^{*}\right] \leq G\left[v_{k}\right]$, so that $\left\{u_{k}\right\}$ is still a minimizing sequence.

Then owing to Lemma 1, we can pass to a subsequence (still labelled $\left\{u_{k}\right\}$) such that
$u_{k} \rightharpoonup u$ weakly in $L^{2}, \quad D u_{k} \rightharpoonup D u$ weakly in L^{2}, and $\quad u_{k} \rightarrow u$ strongly in L^{p},
for every $p \in\left(2,2^{*}\right)$. Upon passing to a further subsequence if necessary, we can also assume that $u_{k} \rightarrow u$ a.e. in \mathbb{R}^{n}. Each u_{k} is nonnegative and radial, so the same properties are inherited by u.

Because of (10), standard weak lowersemicontinuity arguments imply that (8) holds.
3. A calculation reveals that (9) is the Euler-Lagrange equation for G, with

$$
\alpha=\frac{1-\theta}{\|D u\|_{L^{2}}^{2}}, \beta=\frac{\theta}{\|u\|_{L^{2}}^{2}}, \gamma=\frac{1}{\|u\|_{L^{p}}^{p}} .
$$

4. It follows from Step 1 that if u is a minimizer, then so is $u_{a, b}$. Thus, starting with the minimizer found in Step 2 above, we can select a, b so for the associated constants α, β, γ, one has $\beta / \alpha=\lambda$ and $\gamma / \alpha=1$. This is a minimizer of G that is also a solution of (1).

3. PROPERTIES OF SOLUTIONS

In this section we give some further properties of solutions of (1) and related equations, some with proofs and some without.

Proposition 2 (regularity and decay). Assume that $u \in H^{1}\left(\mathbb{R}^{n}\right)$ is a weak solution of

$$
\begin{equation*}
-\Delta u+a u-b|u|^{p-2} u=0 \quad \text { in } \mathbb{R}^{n} \tag{11}
\end{equation*}
$$

Then:
a. For every $q \in[2, \infty)$, there exists a constant C, depending on n, p, q and $\|u\|_{H^{1}}$, such that

$$
u \in W^{3, q}\left(\mathbb{R}^{n}\right), \quad \text { and }\|u\|_{W^{3, q}} \leq C
$$

In particular, $\left|D^{\alpha} u\right| \rightarrow 0$ uniformly as $|x| \rightarrow \infty$ for all $|\alpha| \leq 2$.
b. There exist $C, \varepsilon>0$ such that

$$
e^{\varepsilon|x|}(|u(x)|+|D u(x)|) \leq C
$$

for all $x \in \mathbb{R}^{n}$.
The proof of Proposition 2 uses the Calderon-Zygmund estimates. The version of these estimates that is most convenient for our purposes states that for $1<p<\infty$ and $a>0$, there exists a constant C (depending on p, a and n, such that if $u \in$ $H^{1}\left(\mathbb{R}^{n}\right)$ and $-\Delta u+a u=f \in L^{q}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
u \in W^{2, q}\left(\mathbb{R}^{n}\right), \quad \text { and }\|u\|_{W^{2, q}} \leq C\|f\|_{L^{q}} \tag{12}
\end{equation*}
$$

We assume this result, and we sketch the
proof of Proposition 2. 1. Let u solve (11).
Recall that $2<p<2^{*}$, so that $1<2^{*} /\left(2^{*}-1\right)<2^{*} /(p-1)<2^{*}$. By the Sobolev embedding theorem

$$
\left\||u|^{p-2} u\right\|_{2^{*} /(p-1)}=\|u\|_{2^{*}}^{p-1} \leq C\|u\|_{H^{1}}^{p-1}
$$

Then (11) and the Calderon-Zygmund estimate (12) imply that

$$
\begin{equation*}
u \in W^{2,2^{*} /(p-1)}, \text { with } \quad\|u\|_{W^{2,2^{*} /(p-1)}} \leq C\|u\|_{H^{1}}^{p-1} \tag{13}
\end{equation*}
$$

Since $2^{*} /(p-1)>2$, we have gained regularity.
Note that if we know that $u \in W^{2, q}$ for $q<n / 2$, then almost exactly the same argument, using the Sobolev embedding $W^{2, q} \hookrightarrow L^{q^{* *}}$ and the Calderon-Zygmund estimate, implies that

$$
\begin{equation*}
u \in W^{2, q^{* *} /(p-1)}, \text { with }\|u\|_{W^{2, q^{* *} /(p-1)}} \leq C\|u\|_{W^{2, q}}^{p-1} \tag{14}
\end{equation*}
$$

Here $q^{* *}=\left(q^{*}\right)^{*}$, where ($)^{*}$ denotes the Sobolev exponent for (), so that $\frac{1}{q^{* *}}=\frac{1}{q}-\frac{2}{n}$, or equivalently $q^{* *}=\frac{n q}{n-2 q}$. One can easily check that if $q \geq q_{0}=2^{*} /(p-1)$ then there exists some $\alpha>1$ (depending on p and n) such that $q^{* *} /(p-1)>\alpha q$. Thus by starting from (13) and iterating (14) a finite number of times, one finds that $u \in W^{2, q}$ for some $q>n / 2$, which implies that $u \in L^{\infty}$. Then $|u|^{p-1} u$ belongs to L^{q} for every $q \in[2, \infty)$, and (12) implies that $u \in W^{2, q}$ for every $q \in[2, \infty)$.
2. To get higher regularity, we argue as follows: multiply (11) by $v_{x_{i}}$ for some $v \in H^{1}\left(\mathbb{R}^{n}\right)$ and some i. Then after integrating by parts and using Step 1 , we find that $w:=u_{x_{i}}$ satisfies

$$
\int D w \cdot D v+a w v-b\left(|u|^{p-2} u\right)_{x_{i}} v=0
$$

Since this holds for every $v \in H^{1}$, we conclude that w is a weak solution of

$$
-\Delta w+a w=b\left(|u|^{p-2} u\right)_{x_{i}} .
$$

From Step 1 we deduce that the right-hand side belongs to L^{q} for every $q \in[2, \infty)$. Hence (12) implies that $w \in W^{2, q}$ for the same q. This in turn implies that $u \in W^{3, q}$ for the same range of q, and so $u \in W^{2, \infty}$, and moreover the second derivatives of u are $C^{0, \gamma}$ for every $\gamma<1$.
(Note that by continuing in this fashion. we can easily show tat that $u \in W^{k, q}$ for every positive integer k and for all $q \in[u, \infty)$, so that in fact u is C^{∞}.)
3. Fix some multiindex α with $|\alpha| \leq 2$. Since $D^{\alpha} u$ is $C^{0,1 / 2}$, one check that given any $\varepsilon>0$, there exists $\delta>0$ such that

$$
\text { if } \int_{B_{1}(x)}\left|D^{\alpha} u\right|^{2}<\delta, \quad \text { then }\left|D^{\alpha} u(x)\right| \leq \varepsilon
$$

(Perhaps the easiest way to see this is to prove the contrapositive; see a similar argument in Step 6 below.) Then we can select R so large that

$$
\int_{\mathbb{R}^{n} \backslash B_{R}(0)}\left|D^{\alpha} u\right|^{2}<\delta .
$$

It follows that $\left|D^{\alpha} u(x)\right|<\varepsilon$ for all $|x| \leq R+1$. Thus $\left|D^{\alpha} u(x)\right| \rightarrow 0$ uniformly as $|x| \rightarrow \infty$.

This completes the proof of part a of the Proposition.
4. We now start the proof of \mathbf{b}. For convenience we normalize (1) by assuming that $a=b=1$; the general case follows by a small modification to our arguments,, or by rescaling.

For $\sigma>0$, let $\eta_{\sigma}(x):=e^{\frac{|x|}{1+\sigma|x|}}$. This is a bounded, Lipschitz function. Since u is a solution of (11),

$$
\begin{equation*}
\int D u \cdot D\left(u \eta_{\sigma}\right)+\int u^{2} \eta_{\sigma}=\int|u|^{p} \eta_{\sigma} . \tag{15}
\end{equation*}
$$

Elementary estimates, using the fact (easy to check) that $\left|D \eta_{\sigma}(x)\right| \leq\left|\eta_{\sigma}(x)\right|$ for all x, show that

$$
D u \cdot D\left(u \eta_{\sigma}\right) \geq \eta_{\sigma}|D u|^{2}-|u||D u|\left|D \eta_{\sigma}\right| \geq \frac{1}{2} \eta_{\sigma}|D u|^{2}-\frac{1}{2} \eta_{\sigma} u^{2}
$$

everywhere in \mathbb{R}^{n}. So (15) implies that

$$
\begin{equation*}
\int \eta_{\sigma}\left(|D u|^{2}+u^{2}\right) \leq 2 \int|u|^{p} \eta_{\sigma} . \tag{16}
\end{equation*}
$$

5. Now in view of Step 3, there exists $R>0$ such that $|u|^{p-2} \leq \frac{1}{4}$ for $|x| \geq R$. As a result,

$$
\int|u|^{p} \eta_{\sigma} \leq \int_{B_{R}(0)}|u|^{p} \eta_{\sigma}+\frac{1}{4} \int_{\mathbb{R}^{n} \backslash B_{R}(0)}|u|^{2} \eta_{\sigma}
$$

By combining this with (16) we find that

$$
\int \eta_{\sigma}\left(|D u|^{2}+u^{2}\right) \leq 8 \int_{B_{R}(0)}|u|^{p} \eta_{\sigma} \leq 8 \int_{B_{R}(0)} e^{|x|}|u|^{p} .
$$

Now we let $\sigma \rightarrow 0$. The Monotone Convergence Theorem then yields

$$
\int_{\mathbb{R}^{n}} e^{|x|}\left(|D u|^{2}+u^{2}\right) \leq 8 \int_{B_{R}(0)} e^{|x|}|u|^{p}<\infty
$$

6. Let $f:=|D u|^{2}+u^{2}$. It follows from part a of the Proposition that f is Lipschitz continuous. Let L denote the Lipschitz constant. Then for every $x, y \in \mathbb{R}^{n}$,

$$
f(x) \geq \frac{1}{2} f(y) \quad \text { if } \quad|x-y| \leq f(y) / 2 L
$$

As a result, for every $y \in \mathbb{R}^{n}$,

$$
\int e^{|x|} f(x) \geq \frac{f(y)}{2} \int_{\{x:|x-y| \leq f(y) / 2 L\}} e^{|x|} d x
$$

And clearly $e^{|x|} \geq e^{|x|-\frac{f(y)}{2 L}}$ in $\{x:|x-y| \leq f(y) / 2 L\}$. Since f is bounded, this implies that

$$
\int_{\{x:|x-y| \leq f(y) / 2 L\}} e^{|x|} d x \geq c\left(\frac{f(y)}{2 L}\right)^{n} e^{|x|-\frac{f(y)}{2 L}} \geq c\left(\frac{f(y)}{2 L}\right)^{n} e^{|x|}
$$

By combining all these inequalities, we conclude that

$$
f(y)^{n+1} \leq C e^{-|x|}
$$

for some constant C (depending on u). This implies conclusion \mathbf{b} (when $\mathrm{a}=\mathrm{b}=1$).

Lemma 3. Suppose that $u \in H^{1}\left(\mathbb{R}^{n}\right)$ solves

$$
\begin{equation*}
-\Delta u+a u-b|u|^{p-2} u=0 \quad \text { in } \mathbb{R}^{n} \tag{17}
\end{equation*}
$$

for some $a>0$ and $b \in \mathbb{R}$. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|D u|^{2} d x+a \int_{\mathbb{R}^{n}}|u|^{2} d x=b \int_{\mathbb{R}^{n}}|u|^{p} d x \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n-2}{2} \int_{\mathbb{R}^{n}}|D u|^{2} d x+a \frac{n}{2} \int_{\mathbb{R}^{n}}|u|^{2} d x=b \frac{n}{p} \int_{\mathbb{R}^{n}}|u|^{p} d x \tag{19}
\end{equation*}
$$

Proof. 1. Since u solves (1),

$$
\int D u \cdot D v+a u v-b|u|^{p-2} u v=0
$$

for every $v \in H^{1}\left(\mathbb{R}^{n}\right)$. We deduce (18) by substituting u for v.
2. To prove (19), we multiply both sides of (17) by $x \cdot D u$ and integrate to obtain

$$
-\int_{\mathbb{R}^{n}} \Delta u(x \cdot D u)+a \int_{\mathbb{R}^{n}} u(x \cdot D u)=b \int_{\mathbb{R}^{n}}|u|^{p-2} u(x \cdot D u) .
$$

We consider each term separately.
2a. One can check that

$$
\begin{aligned}
\Delta u(x \cdot D u) & =\sum_{i, j} u_{x_{i} x_{i}} u_{x_{j}} x_{j} \\
& =\sum_{i, j}\left(u_{x_{i}} u_{x_{j}} x_{j}\right)_{x_{i}}-\frac{1}{2} \sum_{j}\left(|D u|^{2} x_{j}\right)_{x_{j}}+\frac{n-2}{2}|D u|^{2} .
\end{aligned}
$$

(Simply expand the right-hand side.) The regularity and decay results proved above then imply that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \Delta u(x \cdot D u) & =\lim _{R \rightarrow \infty} \int_{B_{R}} \Delta u(x \cdot D u) \\
& =\lim _{R \rightarrow \infty} \int_{B_{R}} \sum_{i, j}\left(u_{x_{i}} u_{x_{j}} x_{j}\right)_{x_{i}}-\frac{1}{2} \sum_{j}\left(|D u|^{2} x_{j}\right)_{x_{j}}+\frac{n-2}{2}|D u|^{2} \\
& =\frac{n-2}{2} \int_{\mathbb{R}^{n}}|D u|^{2}+\lim _{R \rightarrow \infty} \int_{\partial B_{R}} \sum_{i, j}\left(u_{x_{i}} u_{x_{j}} x_{j}\right) \nu_{i}-\frac{1}{2} \sum_{j}\left(|D u|^{2} x_{j}\right) \nu_{j} d \sigma \\
& =\frac{n-2}{2} \int_{\mathbb{R}^{n}}|D u|^{2} .
\end{aligned}
$$

2b. Similarly

$$
u(x \cdot D u)=\sum_{i} u x_{i} u_{x_{i}}=\sum_{i} \frac{1}{2} x_{i}\left(u^{2}\right)_{x_{i}}=\sum_{i} \frac{1}{2}\left(x_{i} u^{2}\right)_{x_{i}}-\frac{n}{2}|u|^{2}
$$

which implies that $\int_{\mathbb{R}^{n}} u(x \cdot D u)=-\int_{\mathbb{R}^{n}} \frac{n}{2}|u|^{2}$.

2c. And in exactly the same way,

$$
|u|^{p-2} u(x \cdot D u)=\sum_{i} \frac{1}{p} x_{i}|u|_{x_{i}}^{p}=\sum_{i} \frac{1}{p}\left(x_{i}|u|^{p}\right)_{x_{i}}-\frac{n}{p}|u|^{p},
$$

so that $\int_{\mathbb{R}^{n}}|u|^{p-2} u(x \cdot D u)=-\int_{\mathbb{R}^{n}} \frac{n}{p}|u|^{p}$. By combining these facts, we arrive at (19).

Remark 1. a slightly different way of carrying out the above computations starts from the fact that (17) is the Euler-Lagrange equation for the a functional involving a Lagrangian $L(D u, u)=\frac{1}{2}|D u|^{2}+\frac{a}{2}|u|^{2}-\frac{b}{p}|u|^{p}$ that does not depend on x (and hence exhibits "symmetry with respect to translations in the x_{j} variable, for $j=1, \ldots, n$." Thus we know on general ground that solutions of (17) have conservation laws associated to these symmetries. Concretely, in this case one can check that for any smooth function u,

$$
\left(-\Delta u+a u-b|u|^{p-2} u\right) u_{x_{i}}=\left[\sum_{j}\left(-u_{x_{i}} u_{x_{j}}\right)_{x_{j}}\right]+\frac{1}{2}\left(|D u|^{2}\right)_{x_{i}}+\left(\frac{|u|^{2}}{2}-\frac{|u|^{p}}{p}\right)_{x_{i}} .
$$

Thus the right-hand side equals zero for any smooth solution of (17). This can be thought of as a "conservation law", since the right-hand side is entirely in divergence form. One can obtain (19) by multiplying this conservation law

$$
\left[\sum_{j}\left(-u_{x_{i}} u_{x_{j}}\right)_{x_{j}}\right]+\frac{1}{2}\left(|D u|^{2}\right)_{x_{i}}+\left(\frac{|u|^{2}}{2}-\frac{|u|^{p}}{p}\right)_{x_{i}}=0
$$

by x_{i}, summing from $i=1, \ldots, n$ and integrating by parts. On some level of course this is exactly the same argument.

Note that Lemma 3 implies that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|D u|^{2} d x=b\left(\frac{n}{2}-\frac{n}{p}\right) \int_{\mathbb{R}^{n}}|u|^{p} d x=a n \frac{p-2}{2 p-n p+2 n} \int_{\mathbb{R}^{n}}|u|^{2} d x \tag{20}
\end{equation*}
$$

Next we state
Theorem 3 (symmetry and uniqueness). If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a positive solution of (1), then there exists some $x_{0} \in \mathbb{R}^{n}$ such that $x \mapsto u\left(x+x_{0}\right)$ is radial.

Moreover, there is a unique positive, radial solution $u_{0}: \mathbb{R}^{n} \rightarrow(0, \infty)$ of (1).
Thus every positive solution u of (1) has the form $u(x)=u_{0}\left(x-x_{0}\right)$.
The proof that every positive solution is radial uses a sophisticated form of the "method of moving planes". An easier example of the method of moving planes can be found in Evans, Section 9.5.2. A separate ingredient in the proof of Theorem 3 is a result establishing uniqueness for the radial problem.

We are interested in least-energy solutions of (1), and so we define $\mathcal{G}:=\left\{u \in H^{1}\left(R^{n}\right): u\right.$ solves (1), and $I[u] \leq I[v]$ if $v \in H^{1}\left(R^{n}\right)$ is any other solution of (1) $\}$ A solution of (1) is sometimes called a nonlinear bound state, and a solution $u \in \mathcal{G}$ is called a nonlinear ground state.

Using the above one can prove

Theorem 4. \mathcal{G} is nonempty, and in fact
(21) $u \in \mathcal{G} \Longleftrightarrow u$ minimizes I_{D} in $\mathcal{A}_{\Lambda_{*}}$

$$
\begin{equation*}
\Longleftrightarrow u(x)= \pm u_{0}\left(x-x_{0}\right) \quad \text { for some } x_{0} \in \mathbb{R}^{n} \tag{22}
\end{equation*}
$$

$\Longrightarrow u$ minimizes $G[\cdot]$.
where $\mathcal{A}_{\Lambda_{*}}$ denotes the set defined in Theorem 1.
The proof of this theorem uses all the results described above, but no additional ingredients.

[^0]: ${ }^{1}$ It turns out that every weak solution is in fact C^{∞}, so we will mostly not distinguish carefully between solutions and weak solutions, except when it is necessary.

