
MAT 1061: notes on Nonlinear Ground States

We study solutions1 u ∈ H1(Rn) of the equation

(1) −∆u + λu− |u|p−2u = 0 in Rn

We will restrict our attention to dimensions n ≥ 3; similar results hold in dimen-
sions n = 1, 2, with small modifications.

We will study (1) using variational methods. Thus we define the functional

(2) I[u] :=
∫

Rn

|Du|2

2
+ λ

|u|2

2
− |u|p

p
dx.

It will be useful to give a name to each of the 3 terms that make up I. Thus we
use the notation ID for the Dirichlet energy,

ID[u] =
∫

Rn

|Du|2

2

and for q ≥ 1 we write

Iq[u] :=
∫

Rn

|u|q

q
dx

so that I = ID + λI2 − Ip.
We will first establish existence of solutions of (1) by a variational argument.

We will then go on to establish some interesting properties of the specific solutions
found by our variational technique.

1. existence

In this section we prove

Theorem 1. For Λ > 0, define

AΛ := {v ∈ H1(Rn) : λI2[v]− Ip[v] = −Λ}.

Then for every Λ > 0, there exists u ∈ AΛ such that u is positive and radial, and

ID[u] = min
v∈AΛ

ID[v].

Moreover, there exists a number Λ∗ for which every minimizer of ID in AΛ∗ is a
solution of (1) (including in particular the minimizer found above.)

To say that u is radial means that there exists some function ũ : [0,∞) → [0,∞)
such that u(x) = ũ(|x|) a.e..

1It turns out that every weak solution is in fact C∞, so we will mostly not distinguish carefully
between solutions and weak solutions, except when it is necessary.
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1.1. some lemmas. We will need the following deep fact from analysis, which we
will accept without proof:

Proposition 1 (Symmetrization decreases the Dirichlet energy). Suppose that u ∈
Lp(Rn; C) for some p, and that Du ∈ L2(Rn). Define the Schwarz symmetrization
of u to be the unique nonnegative, radial function in L2(Rn), denoted u∗, with the
property that

Ln ({x ∈ Rn : u∗(x) ≥ λ}) = Ln ({x ∈ Rn : u(x) ≥ λ})

for every λ ∈ R, and as a result

‖u∗‖Lq(Rn) = ‖u‖Lq(Rn)

for every q ∈ [1,∞] (where it is possible that both sides equal +∞ for some q). Then
Du∗ ∈ L2, and

(3)
∫

Rn

|Du∗|2 dx ≤
∫

Rn

|Du|2 dx.

Remarks about the proof. �

Next, we have the following

Lemma 1. Let H1
rad(Rn) := {v ∈ H1(Rn) : v is radial }. Then H1

rad(Rn) is
compactly embedded in Lp(Rn) for every p ∈ (2, 2∗).

The lemma is interesting because Rellich’s compactness theorem fails on Rn. For
example, if u ∈ H1(Rn) is any nonzero function and xk is any sequence of points
tending to ∞, then the sequence uk(x) := u(x−xk) is bounded in H1(Rn) but does
not have any convergent sequence in Lp(Rn) for any p.

Proof. 1. We first claim that if v ∈ H1
rad(Rn), then

|x|
n−1

2 |v(x)| ≤ C‖v‖L2 ‖Dv‖L2 for a.e.x ∈ Rn.

To prove this, note if v ∈ H1
rad(Rn) is smooth with compact support, then

rn−1|v(r)|2 = −
∫ ∞

r

d

ds
(sn−1|v(s)|2) ds

≤ −2
∫ ∞

r
sn−1v(s) v′(s) ds

≤ C

(∫ ∞

r
sn−1|v(s)|2 ds

)1/2 (∫ ∞

r
sn−1|v′(s)|2 ds

)1/2

≤ C‖v‖L2‖Dv‖L2 .

Since C∞
c (Rn) is dense in H1(Rn), it follows that the claim holds for all v ∈ H1

rad.

2. Now suppose that {uk} ⊂ H1(Rn) is a sequence such that ‖uk‖H1 ≤ C. After
passing to a subsequence, we may assume that there exists some u ∈ H1(Rn) such
that

uk ⇀ u weakly in L2(Rn), Duk ⇀ Du weakly in L2(Rn).
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Note that ‖u‖H1 ≤ supk ‖uk‖H1 ≤ C To complete the proof we will show that for
p ∈ (2, 2∗) and arbitrary ε > 0, there exists some ` = `(ε) such that ‖uk − u‖Lp < ε
for all k ≥ `. Then for R to be chosen,

‖u− uk‖Lp = ‖u− uk‖Lp(BR) + ‖u− uk‖Lp(Rn\BR)

≤ ‖u− uk‖Lp(BR) + ‖u− uk‖
2/p
L2(Rn\BR)

‖u− uk‖
(p−2)/p
L∞(Rn\BR)

Clearly ‖u− uk‖
2/p
L2(Rn\BR)

≤ C, and in view of Step 1, if v ∈ H1
rad then

‖v‖L∞(Rn\BR) ≤ CR
1−n

2 ‖v‖H1

Thus by taking R large enough, we can arrange that

‖u− uk‖
2/p
L2(Rn\BR)

‖u− uk‖
(p−2)/p
L∞(Rn\BR) ≤

ε

2
.

Having fixed R, we note that since BR is bounded, Rellich’s Compactness Theorem
and the weak convergence uk ⇀ u imply that uk → u in Lp(BR) for p < 2∗. Thus
there exists some ` such that ‖u− uk‖Lp(BR) < ε

2 if k ≥ `. �

1.2. proof of Theorem 1. Using the above results, we present the proof of the
theorem.

proof of Theorem 1. 1. Fix Λ > 0, and let {vk} ⊂ AΛ be a sequence such that

ID[vk] → inf
AΛ

ID.

Let uk denote the Schwarz symmetrization v∗k of vk.
It is clear that uk ∈ AΛ, and it follows from Proposition 1 that ID[uk] → infAΛ

ID.
Next, note that for every v ∈ AΛ,

λ

2
‖v‖2

2 =
1
p
‖v‖p

p − Λ ≤ 1
p
‖v‖p

p ≤ 1
p

(
‖v‖θ

2 ‖Dv‖1−θ
2

)p

for θ as defined in (7), see Lemma 2 below. Upon rearranging we find that

‖v‖2−θp
2 ≤ C‖Dv‖(1−θ)p

2 .

The definition of θ implies that 2−θp = 2p1−θ
2∗ > 0, so it follows that ‖v‖2 ≤ C‖Dv‖α

2

for some α > 0, for v ∈ AΛ.
It follows that {uk} is bounded in H1(Rn).
2. Next, in view of Lemma 1, we can pass to a subsequence (still labelled {uk})

such that
(4)
uk ⇀ u weakly in L2, Duk ⇀ Du weakly in L2, and uk → u strongly in Lp.

Upon passing to a further subsequence if necessary, we can also assume that uk → u
a.e. in Rn. Each uk is nonnegative and radial, so the same properties are inherited
by u.
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3. We next show that u ∈ AΛ It follows from (4) that∫
|u|2 ≤ lim inf

k

∫
|uk|2∫

|Du|2 ≤ lim inf
k

∫
|Duk|2 = inf

AΛ

ID∫
|u|p = lim

k

∫
|uk|p.

Since each uk belongs to AΛ, we deduce that

−λI2[u] + Ip[u] ≥ lim inf
k

(−λI2[uk] + Ip[uk]) = Λ

Suppose toward a contradiction that strict inequality holds. Then there exists some
a ∈ (0, 1) such that au ∈ AΛ, and clearly ID[au] = a2ID[u] < infAΛ

ID, which is
impossible. Thus u ∈ AΛ.

We conclude that u minimizes ID in AΛ, as required.
4. next, we know that the Euler-Lagrange equation for the constrained varia-

tional problem satisfied by u is

−∆u = α(−λu + |u|p−2u)

where α is a Lagrange multiplier. Then Lemma 3 proved below (see in particular
(20)) implies that there exists a constant cn,p depending only on n and p, such that∫

|u|pdx = cn,pλ

∫
|u|2dx.

Since u ∈ AΛ, it follows that

(5) Λ = −λ

2

∫
|u|2 +

1
p

∫
|u|p = (

cn,p

p
− 1

2
) λ

∫
|u|2 = (

1
p
− 1

2cn,p
)

∫
|u|p.

In addition, Lemma 3 also implies that

α =
∫
|Du|2∫

(−λ|u|2 + |u|p)
.

Then it follows from (5) that the Lagrange multiplier α depends only on Λ (even if
there is more than one minimizer in AΛ). Thus we will write α(Λ) to indicate the
unique Lagrange multiplier associated with minimizing in AΛ.

Finally, we wish to adjust Λ so that the corersponding Lagrange mutliplier α(Λ)
equals 1. To do this, let us define a map δa : H1(Rn) → H1(Rn) by δau(x) = u(ax),
a > 0. Then by a change of variables,

‖δau‖q
Lq = a−n‖u‖q

Lq ID[δau] = a2−nID[u]

for every u ∈ H1(Rn) and every a > 0. It is clear that δa is invertible, and it follows
that δa is a bijection of AΛ onto Aa−nΛ, and that infAa−nΛ

ID = α2−n infAΛ
ID. We

conclude that
α(a−nΛ) = a2α(Λ).

This implies that there is a unique Λ∗ such that α(Λ∗) = 1, which completes the
proof. �
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2. a different existence proof

In this section we give an alternative argument in which we again find solutions
of (1) via a different variational problem.

First we recall

Lemma 2. If v ∈ W 1,q(Rn) for q < n, then v ∈ Ls(Rn) for all s ∈ (q, q∗), and in
addition

(6) ‖v‖Ls(Rn) ≤ C‖v‖θ
Lq(Rn) ‖Dv‖1−θ

Lq(Rn)

where θ is defined by

(7)
1
s

=
θ

q
+

1− θ

q∗
.

The proof is an exercise. Inequality (6) is sometimes called the Sobolev-Nirenberg-
Gagliardo inequality. It implies that if we define

G[v] :=
‖v‖θ

L2(Rn) ‖Dv‖1−θ
L2(Rn)

‖v‖Lp(Rn)

then G[v] ≥ C−1 for every v ∈ H1(Rn)\{0}. (Here p is the same number appearing
in (1), so that 2 < p < 2∗, and θ is as in Lemma 6.)

The next theorem shows that at least some solutions of (1) minimize G[·], which
means that they are extremal for the Sobolev-Nirenberg-Gagliardo inequality.

Theorem 2. There exists a nonnegative radial function u ∈ H1(Rn) such that

(8) G[u] ≤ G[v] for all v ∈ H1(Rn) \ {0}.

Moreover, if u is any minimizer of G, then

(9) −α∆u + βu− γ|u|p−2u = 0

for positive constants α, β, γ. Finally, there exists a minimizer of G that solves (1).

Proof. 1. First, it is easy to check that for any v ∈ H1(Rn) and any a, b > 0, if we
define va,b(x) := bv(ax), then G[va,b] = G[v]. Indeed, this follows from noting that

‖va,b‖Lq = ba
−n

q ‖v‖Lq for every q, ‖Dva,b‖L2 = ba1−n
2 ‖Dv‖L2(Rn),

together with some arithmetic. These identities also imply that, given any nonzero
v ∈ H1(Rn), we can choose a, b such that ‖va,b‖L2 = ‖Dva,b‖L2 = 1.

2. let {vk} ⊂ H1(Rn) \ {0} be a sequence such that

G[vk] → inf
H1\{0}

G.

For each k, we let uk := (v∗k)a,b, for a, b chosen so that ‖uk‖L2 = ‖Duk‖L2 = 1.
(That is, uk is obtained from vk by first symmetrizing as in Proposition 1, and then
by rescaling as in Step 1 above.) It follows that G[uk] = G[v∗k] ≤ G[vk], so that {uk}
is still a minimizing sequence.
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Then owing to Lemma 1, we can pass to a subsequence (still labelled {uk}) such
that
(10)
uk ⇀ u weakly in L2, Duk ⇀ Du weakly in L2, and uk → u strongly in Lp,

for every p ∈ (2, 2∗). Upon passing to a further subsequence if necessary, we can
also assume that uk → u a.e. in Rn. Each uk is nonnegative and radial, so the same
properties are inherited by u.

Because of (10), standard weak lowersemicontinuity arguments imply that (8)
holds.

3. A calculation reveals that (9) is the Euler-Lagrange equation for G, with

α = 1−θ
‖Du‖2

L2
, β = θ

‖u‖2
L2

, γ = 1
‖u‖p

Lp
.

4. It follows from Step 1 that if u is a minimizer, then so is ua,b. Thus, starting
with the minimizer found in Step 2 above, we can select a, b so for the associated
constants α, β, γ, one has β/α = λ and γ/α = 1. This is a minimizer of G that is
also a solution of (1). �

3. properties of solutions

In this section we give some further properties of solutions of (1) and related
equations, some with proofs and some without.

Proposition 2 (regularity and decay). Assume that u ∈ H1(Rn) is a weak solution
of

(11) −∆u + au− b|u|p−2u = 0 in Rn.

Then:
a. For every q ∈ [2,∞), there exists a constant C, depending on n, p, q and

‖u‖H1, such that

u ∈ W 3,q(Rn), and ‖u‖W 3,q ≤ C.

In particular, |Dαu| → 0 uniformly as |x| → ∞ for all |α| ≤ 2.
b. There exist C, ε > 0 such that

eε|x| (|u(x)|+ |Du(x)|) ≤ C

for all x ∈ Rn.

The proof of Proposition 2 uses the Calderon-Zygmund estimates. The version of
these estimates that is most convenient for our purposes states that for 1 < p < ∞
and a > 0, there exists a constant C (depending on p, a and n, such that if u ∈
H1(Rn) and −∆u + au = f ∈ Lq(Rn), then

(12) u ∈ W 2,q(Rn), and ‖u‖W 2,q ≤ C‖f‖Lq .

We assume this result, and we sketch the
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proof of Proposition 2. 1. Let u solve (11).
Recall that 2 < p < 2∗, so that 1 < 2∗/(2∗−1) < 2∗/(p−1) < 2∗. By the Sobolev

embedding theorem

‖|u|p−2u‖2∗/(p−1) = ‖u‖p−1
2∗ ≤ C‖u‖p−1

H1 .

Then (11) and the Calderon-Zygmund estimate (12) imply that

(13) u ∈ W 2,2∗/(p−1), with ‖u‖W 2,2∗/(p−1) ≤ C‖u‖p−1
H1 .

Since 2∗/(p− 1) > 2, we have gained regularity.
Note that if we know that u ∈ W 2,q for q < n/2, then almost exactly the same

argument, using the Sobolev embedding W 2,q ↪→ Lq∗∗ and the Calderon-Zygmund
estimate, implies that

(14) u ∈ W 2,q∗∗/(p−1), with ‖u‖W 2,q∗∗/(p−1) ≤ C‖u‖p−1
W 2,q .

Here q∗∗ = (q∗)∗, where ( )∗ denotes the Sobolev exponent for ( ), so that 1
q∗∗ = 1

q−
2
n ,

or equivalently q∗∗ = nq
n−2q . One can easily check that if q ≥ q0 = 2∗/(p − 1) then

there exists some α > 1 (depending on p and n) such that q∗∗/(p − 1) > αq. Thus
by starting from (13) and iterating (14) a finite number of times, one finds that
u ∈ W 2,q for some q > n/2, which implies that u ∈ L∞. Then |u|p−1u belongs to
Lq for every q ∈ [2,∞), and (12) implies that u ∈ W 2,q for every q ∈ [2,∞).

2. To get higher regularity, we argue as follows: multiply (11) by vxi for some
v ∈ H1(Rn) and some i. Then after integrating by parts and using Step 1, we find
that w := uxi satisfies ∫

Dw ·Dv + awv − b(|u|p−2u)xiv = 0.

Since this holds for every v ∈ H1, we conclude that w is a weak solution of

−∆w + aw = b(|u|p−2u)xi .

From Step 1 we deduce that the right-hand side belongs to Lq for every q ∈ [2,∞).
Hence (12) implies that w ∈ W 2,q for the same q. This in turn implies that u ∈ W 3,q

for the same range of q, and so u ∈ W 2,∞, and moreover the second derivatives of
u are C0,γ for every γ < 1.

(Note that by continuing in this fashion. we can easily show tat that u ∈ W k,q

for every positive integer k and for all q ∈ [u,∞), so that in fact u is C∞.)

3. Fix some multiindex α with |α| ≤ 2. Since Dαu is C0,1/2, one check that given
any ε > 0, there exists δ > 0 such that

if
∫

B1(x)
|Dαu|2 < δ, then |Dαu(x)| ≤ ε.

(Perhaps the easiest way to see this is to prove the contrapositive; see a similar
argument in Step 6 below.) Then we can select R so large that∫

Rn\BR(0)
|Dαu|2 < δ.

It follows that |Dαu(x)| < ε for all |x| ≤ R + 1. Thus |Dαu(x)| → 0 uniformly as
|x| → ∞.
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This completes the proof of part a of the Proposition.
4. We now start the proof of b. For convenience we normalize (1) by assuming

that a = b = 1; the general case follows by a small modification to our arguments,,
or by rescaling.

For σ > 0, let ησ(x) := e
|x|

1+σ|x| . This is a bounded, Lipschitz function. Since u is
a solution of (11),

(15)
∫

Du ·D(uησ) +
∫

u2ησ =
∫
|u|pησ.

Elementary estimates, using the fact (easy to check) that |Dησ(x)| ≤ |ησ(x)| for all
x, show that

Du ·D(uησ) ≥ ησ|Du|2 − |u| |Du| |Dησ| ≥
1
2
ησ|Du|2 − 1

2
ησu2

everywhere in Rn. So (15) implies that

(16)
∫

ησ(|Du|2 + u2) ≤ 2
∫
|u|pησ.

5. Now in view of Step 3, there exists R > 0 such that |u|p−2 ≤ 1
4 for |x| ≥ R.

As a result, ∫
|u|pησ ≤

∫
BR(0)

|u|pησ +
1
4

∫
Rn\BR(0)

|u|2ησ.

By combining this with (16) we find that∫
ησ(|Du|2 + u2) ≤ 8

∫
BR(0)

|u|pησ ≤ 8
∫

BR(0)
e|x| |u|p.

Now we let σ → 0. The Monotone Convergence Theorem then yields∫
Rn

e|x|(|Du|2 + u2) ≤ 8
∫

BR(0)
e|x| |u|p < ∞.

6. Let f := |Du|2+u2. It follows from part a of the Proposition that f is Lipschitz
continuous. Let L denote the Lipschitz constant. Then for every x, y ∈ Rn,

f(x) ≥ 1
2f(y) if |x− y| ≤ f(y)/2L.

As a result, for every y ∈ Rn,∫
e|x|f(x) ≥ f(y)

2

∫
{x:|x−y|≤f(y)/2L}

e|x| dx.

And clearly e|x| ≥ e|x|−
f(y)
2L in {x : |x − y| ≤ f(y)/2L}. Since f is bounded, this

implies that∫
{x:|x−y|≤f(y)/2L}

e|x| dx ≥ c

(
f(y)
2L

)n

e|x|−
f(y)
2L ≥ c

(
f(y)
2L

)n

e|x|

By combining all these inequalities, we conclude that

f(y)n+1 ≤ Ce−|x|

for some constant C (depending on u). This implies conclusion b (when a=b=1). �
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Lemma 3. Suppose that u ∈ H1(Rn) solves

(17) −∆u + au− b|u|p−2u = 0 in Rn

for some a > 0 and b ∈ R. Then

(18)
∫

Rn

|Du|2 dx + a

∫
Rn

|u|2 dx = b

∫
Rn

|u|p dx

and

(19)
n− 2

2

∫
Rn

|Du|2 dx + a
n

2

∫
Rn

|u|2 dx = b
n

p

∫
Rn

|u|p dx

Proof. 1. Since u solves (1),∫
Du ·Dv + auv − b|u|p−2uv = 0

for every v ∈ H1(Rn). We deduce (18) by substituting u for v.
2. To prove (19), we multiply both sides of (17) by x ·Du and integrate to obtain

−
∫

Rn

∆u(x ·Du) + a

∫
Rn

u(x ·Du) = b

∫
Rn

|u|p−2u(x ·Du).

We consider each term separately.
2a. One can check that

∆u(x ·Du) =
∑
i,j

uxixiuxjxj

=
∑
i,j

(uxiuxjxj)xi −
1
2

∑
j

(|Du|2xj)xj +
n− 2

2
|Du|2.

(Simply expand the right-hand side.) The regularity and decay results proved above
then imply that∫

Rn

∆u(x ·Du) = lim
R→∞

∫
BR

∆u(x ·Du)

= lim
R→∞

∫
BR

∑
i,j

(uxiuxjxj)xi −
1
2

∑
j

(|Du|2xj)xj +
n− 2

2
|Du|2

=
n− 2

2

∫
Rn

|Du|2 + lim
R→∞

∫
∂BR

∑
i,j

(uxiuxjxj)νi −
1
2

∑
j

(|Du|2xj)νjdσ

=
n− 2

2

∫
Rn

|Du|2.

2b. Similarly

u(x ·Du) =
∑

i

uxiuxi =
∑

i

1
2
xi(u2)xi =

∑
i

1
2
(xiu

2)xi −
n

2
|u|2

which implies that
∫

Rn u(x ·Du) = −
∫

Rn
n
2 |u|

2.
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2c. And in exactly the same way,

|u|p−2u(x ·Du) =
∑

i

1
p
xi|u|pxi

=
∑

i

1
p
(xi|u|p)xi −

n

p
|u|p,

so that
∫

Rn |u|p−2u(x ·Du) = −
∫

Rn
n
p |u|

p. By combining these facts, we arrive at
(19). �

Remark 1. a slightly different way of carrying out the above computations starts
from the fact that (17) is the Euler-Lagrange equation for the a functional involving
a Lagrangian L(Du, u) = 1

2 |Du|2+ a
2 |u|

2− b
p |u|

p that does not depend on x (and hence
exhibits “symmetry with respect to translations in the xj variable, for j = 1, ..., n.”
Thus we know on general ground that solutions of (17) have conservation laws
associated to these symmetries. Concretely, in this case one can check that for
any smooth function u,

(−∆u + au− b|u|p−2u)uxi = [
∑

j

(−uxiuxj )xj ] +
1
2
(|Du|2)xi + (

|u|2

2
− |u|p

p
)xi .

Thus the right-hand side equals zero for any smooth solution of (17). This can be
thought of as a “conservation law”, since the right-hand side is entirely in divergence
form. One can obtain (19) by multiplying this conservation law

[
∑

j

(−uxiuxj )xj ] +
1
2
(|Du|2)xi + (

|u|2

2
− |u|p

p
)xi = 0

by xi, summing from i = 1, . . . , n and integrating by parts. On some level of course
this is exactly the same argument.

Note that Lemma 3 implies that

(20)
∫

Rn

|Du|2 dx = b(
n

2
− n

p
)
∫

Rn

|u|p dx = an
p− 2

2p− np + 2n

∫
Rn

|u|2 dx.

Next we state

Theorem 3 (symmetry and uniqueness). If u : Rn → R is a positive solution of
(1), then there exists some x0 ∈ Rn such that x 7→ u(x + x0) is radial.

Moreover, there is a unique positive, radial solution u0 : Rn → (0,∞) of (1).
Thus every positive solution u of (1) has the form u(x) = u0(x− x0).

The proof that every positive solution is radial uses a sophisticated form of the
“method of moving planes”. An easier example of the method of moving planes can
be found in Evans, Section 9.5.2. A separate ingredient in the proof of Theorem 3
is a result establishing uniqueness for the radial problem.

We are interested in least-energy solutions of (1), and so we define

G := {u ∈ H1(Rn) : u solves (1), and I[u] ≤ I[v] if v ∈ H1(Rn) is any other solution of (1)}
A solution of (1) is sometimes called a nonlinear bound state, and a solution u ∈ G
is called a nonlinear ground state.

Using the above one can prove
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Theorem 4. G is nonempty, and in fact

u ∈ G ⇐⇒ u minimizes ID in AΛ∗(21)

⇐⇒ u(x) = ±u0(x− x0) for some x0 ∈ Rn(22)

=⇒ u minimizes G[·].(23)

where AΛ∗ denotes the set defined in Theorem 1.

The proof of this theorem uses all the results described above, but no additional
ingredients.


