some theorems about determinants

Theorem 1 is a bit different from the presentation I gave during the lecture, and everything following Theorem 1 was not covered during the lecture. Please read it (and let me know if you find any misprints).

Theorem 1. Suppose that u and v belong to $W^{1, n}\left(U ; \mathbb{R}^{n}\right)$ and that $u-v \in W_{0}^{1, n}(U)$. Then

$$
\int_{U} \operatorname{det} D u d x=\int_{U} \operatorname{det} D v d x
$$

(compare Theorems 1 and 2 in Section 8.1, Evans)
Proof. 1. Given $u \in W^{1, n}(U)$, we define $j(u): U \rightarrow \mathbb{R}^{n}$ by

$$
j^{i}(u):=\operatorname{det}\left(u_{x_{1}}, \ldots, u_{x_{i-1}}, u, u_{x_{i+1}}, \ldots, u_{x_{n}}\right) .
$$

The notation on the right-hand side means: the determinant of the matrix whose columns are the given vectors, arranged in the given order. We claim that

$$
\begin{equation*}
\operatorname{det} D u=\frac{1}{n} \sum_{i=1}^{n} \partial_{x_{i}} j^{i}(u) \tag{1}
\end{equation*}
$$

To see this, first note that the multilinearity of the determinant implies that

$$
\begin{aligned}
& \partial_{x_{i}} j^{i}(u)= \operatorname{det}\left(u_{x_{1} x_{i}}, \ldots, u_{x_{i-1}}, u, u_{x_{i+1}}, \ldots, u_{x_{n}}\right) \\
&+\operatorname{det}\left(u_{x_{1}}, u_{x_{2} x_{i}}, \ldots, u_{x_{i-1}}, u, u_{x_{i+1}}, \ldots, u_{x_{n}}\right) \\
&+\ldots+\operatorname{det}\left(u_{x_{1}}, \ldots, u_{x_{i-1}}, u, u_{x_{i+1}}, \ldots, u_{x_{n} x_{i}}\right) \\
&=\operatorname{det} D u+\sum_{k \neq i} T_{i k}
\end{aligned}
$$

where $T_{i k}$ is the determinant of the matrix with $u_{x_{k} x_{i}}$ in the k th column, u in the i th column, and $u_{x_{\ell}}$ in the ℓ th column if $\ell \notin\{i, k\}$. Basic properties of determinants imply that $T_{i k}=-T_{k i}$, so we find that

$$
\sum_{i=1}^{n} \partial_{x_{i}} j^{i}(u)=\operatorname{det} D u+\frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq i} T_{i k}=\operatorname{det} D u
$$

since $T_{i k}$ and $T_{k i}$ cancel each other out.
2. Now suppose that u and v belong to $C^{1}\left(U ; \mathbb{R}^{n}\right)$ and that $u-v$ is smooth with compact support in U. Then $j(u)=j(v)$ in a neighborhood of ∂U, and it follows that

$$
\int_{U} \operatorname{det} D u=\int_{U} \nabla \cdot j(u)=\int_{\partial U} j(u) \cdot \nu=\int_{\partial U} j(v) \cdot \nu=\int_{U} \operatorname{det} D v .
$$

3. Now suppose that u belongs to $C^{1}\left(U ; \mathbb{R}^{n}\right)$ and that $v=u+\phi$, for $\phi \in W_{0}^{1, n}(U)$. By definition of $W_{0}^{1, n}(U)$, there exists a sequence $\left\{\phi_{k}\right\}$ of smooth functions with compact support, such that $\left\|\phi_{k}-\phi\right\|_{W^{1, n}} \rightarrow 0$ as $k \rightarrow \infty$. Then we conclude that

$$
\int_{U} \operatorname{det} D v d x=\int_{U} \operatorname{det} D(u+\phi) d x=\lim _{k \rightarrow \infty} \int_{U} \operatorname{det} D\left(u+\phi_{k}\right) d x=\int_{U} \operatorname{det} D u
$$

where the last equality holds for every k, by Step 2. Finally, a similar approximation argument allows us to conclude that

$$
\int_{U} \operatorname{det} D u=\int_{U} \operatorname{det} D v
$$

if it is merely true that $u \in W^{1, n}(U)$ and $u-v \in W_{0}^{1, n}(U)$.
It should be obvious that the convergence $\left\|\phi_{k}-\phi\right\|_{W^{1, n}} \rightarrow 0$ as $k \rightarrow \infty$ implies that

$$
\int_{U} \operatorname{det} D\left(u+\phi_{k}\right) d x \rightarrow \int_{U} \operatorname{det} D(u+\phi) \quad \text { as } k \rightarrow \infty
$$

(This fact was used above.)

For $1 \leq k \leq n$, let us write

$$
I(k, n):=\left\{\alpha \in \mathbb{Z}^{k}: 1 \leq \alpha_{1}<\ldots<\alpha_{k} \leq n\right\}
$$

For $\alpha, \beta \in I(k, n)$, we write $D_{\beta}^{\alpha} u$ to denote the $k \times k$ matrix with $u_{x_{\beta_{j}}}^{\alpha_{i}}$ in the (i, j) position. We will also write u^{α} to denote the (column) vector

$$
u^{\alpha}=\left(\begin{array}{r}
u^{\alpha_{1}} \\
\vdots \\
u^{\alpha_{k}}
\end{array}\right)
$$

Then $D_{\beta}^{\alpha} u=\left(u_{x_{\beta_{1}}}^{\alpha}, \ldots, u_{x_{\beta_{k}}}^{\alpha}\right)$ where the right-hand side denotes the matrix whose columns are the given vectors arranged in the given order.

Having introduced this notation, we can see that

$$
\begin{equation*}
\operatorname{det} D_{\beta}^{\alpha} u=\frac{1}{k} \sum_{i=1^{k}} \partial_{x_{\beta_{i}}} j_{\beta}^{i}\left(u^{\alpha}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{\beta}^{i}\left(u^{\alpha}\right)=\operatorname{det}\left(u_{x_{\beta_{1}}}^{\alpha}, \ldots, u_{x_{\beta_{i-1}}}^{\alpha}, u^{\alpha}, u_{x_{\beta_{i+1}}}^{\alpha} u_{x_{\beta_{k}}}^{\alpha}\right) . \tag{3}
\end{equation*}
$$

This follows by exactly same the calculation carried out in Step 1 of the above proof.
A determinant of a sub-matrix of $D u$ is often called a "minor of $D u$ ". We may also speak of a "minor of order k " or a " $k \times k$ minor" if the submatrix in question is a $k \times k$ matrix. An easy adaptation of the proof given above shows that $L(D u):=\operatorname{det} D_{\beta}^{\alpha} u$ is a null Lagrangian for every α, β as above.

Next we prove
Lemma 1. (Weak continuity of determinants) Assume that $n<q<\infty$ and that

$$
u_{\ell} \rightharpoonup u \text { weakly in } W^{1, q}\left(U ; \mathbb{R}^{n}\right)
$$

Then

$$
\operatorname{det} D u_{\ell} \rightharpoonup \operatorname{det} D u \quad \text { weakly in } L^{q / n}(U) .
$$

(Compare the Lemma in Section 8.2.4b, Evans; this is the same lemma with a slightly different proof.)

For the proof we will need the following standard (and very useful) fact.
Lemma 2. Suppose that $\left\{f_{\ell}\right\},\left\{g_{\ell}\right\}$ are sequences of functions and f, g are functions such that

$$
f_{\ell} \rightarrow f \text { strongly in } L^{p}(U), \quad g_{\ell} \rightarrow g \text { weakly in } L^{q}(U)
$$

for some $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}<1$. Then

$$
f_{\ell} g_{\ell} \rightharpoonup f g \text { weakly in } L^{r}(U)
$$

Proof of Lemma 2. Fix $h \in L^{r^{\prime}}$, where $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. We must show that

$$
\int f_{\ell} g_{\ell} h d x \rightarrow \int f g h d x
$$

as $k \rightarrow \infty$. To do this, we write

$$
\int\left(f_{\ell} g_{\ell} h-f g h\right) d x=\int\left(f_{\ell}-f\right) g_{\ell} h d x+\int\left(g_{\ell}-g\right) f h d x
$$

For the first integral, since $\frac{1}{p}+\frac{1}{q}+\frac{1}{r^{\prime}}=1$, Holder's inequality implies that

$$
\left|\int\left(f_{\ell}-f\right) g_{\ell} h d x\right| \leq\left\|f_{\ell}-f\right\|_{p}\left\|g_{\ell}\right\|_{q}\|h\|_{r^{\prime}} \leq C\left\|f_{\ell}-f\right\|_{p} \rightarrow 0
$$

as $k \rightarrow \infty$. that a weakly convergent sequence is bounded, which implies in particular that there exists some C such that $\left\|g_{\ell}\right\|_{q} \leq C$. This fact is a consequence of the Banach-Steinhaus Theorem (also known as the Uniform Boundedness Principle).

Also, let q^{\prime} be the Holder dual of q, so that $\frac{1}{q^{\prime}}=1-\frac{1}{q}$. Then $\frac{1}{q^{\prime}}=\frac{1}{p}+\frac{1}{r^{\prime}}$, so Holder's inequality implies that $\|f h\|_{q^{\prime}} \leq\|f\|_{p}\|h\|_{r^{\prime}}$. Thus $f g \in L^{q^{\prime}}$, and the weak convergence $g_{\ell} \rightarrow g$ weakly in L^{q} implies that $\int\left(g_{\ell}-g\right) f h d x \quad \rightarrow 0$ as $k \rightarrow \infty$.

Using the Lemma we give the
Proof of Lemma 1. We will in fact prove that if $\alpha, \beta \in I(k, n)$ for any $k \in\{1, \ldots, n\}$, and

$$
\begin{equation*}
\text { if } u_{\ell} \rightarrow u \text { weakly in } W^{1, q}(U) \text {, then } \operatorname{det} D_{\beta}^{\alpha} u_{\ell} \rightharpoonup \operatorname{det} D_{\beta}^{\alpha} u \text { weakly in } L^{q / k} \tag{4}
\end{equation*}
$$

We prove this by induction on k.
The case $k=1$ is clear.
Suppose we have proved (4) for $1,2, \ldots, k-1$, for $k \leq n$. Fix $\alpha, \beta \in I(k, n)$, and assume that $u_{\ell} \rightarrow u$ weakly in $W^{1, q}(U)$.

For any smooth function v with compact support, note from (2), (3) that

$$
\int_{U} v \operatorname{det} D_{\beta}^{\alpha} u_{\ell} d x=-\int_{U} \sum_{i} v_{x_{i}} j_{\beta}^{i}\left(u_{\ell}^{\alpha}\right) d x
$$

after integration by parts. Note that for each i and ℓ,

$$
j_{\beta}^{i}\left(u_{\ell}^{\alpha}\right)=\text { sum of terms of the form }\left(u_{\alpha_{k}}^{\ell}\right) \times\left[\text { minor of } D u_{\ell} \text { of order }(\mathrm{k}-1)\right] .
$$

Rellich's compactness theorem implies that that $u_{\ell}^{\alpha_{k}} \rightarrow u^{\alpha_{k}}$ strongly in L^{q} as $q \rightarrow \infty$, and the induction hypothesis implies that every sequence of minors of $D u_{\ell}$ of order $k-1$ converges weakly in $L^{q /(k-1)}$ to the corresponding minor of $D u$. Thus it follows from Lemma 2 that $j_{\beta}^{i}\left(u_{\ell}^{\alpha}\right) \rightharpoonup j_{\beta}^{i}\left(u^{\alpha}\right)$ as $\ell \rightarrow \infty$. Consequently,

$$
\begin{equation*}
\int_{U} v \operatorname{det} D_{\beta}^{\alpha} u_{\ell} d x \rightarrow-\int_{U} \sum_{i} v_{x_{i}} j_{\beta}^{i}\left(u^{\alpha}\right) d x=\int_{U} v \operatorname{det} D_{\beta}^{\alpha} u d x \tag{5}
\end{equation*}
$$

as $\ell \rightarrow \infty$.
Note that $\left|\operatorname{det} D_{\beta}^{\alpha} u_{\ell}\right| \leq C\left|D u_{\ell}\right|^{k}$ pointwise, which implies that $\left\|\operatorname{det} D_{\beta}^{\alpha} u_{\ell}\right\|_{q / k} \leq C\left\|\left|D u_{\ell}\right|^{k}\right\|_{q / k} \leq$ $\left\|D u_{\ell}\right\|_{q}^{k} \leq C$ (again by the Banach-Steinhaus Theorem.) Thus every subsequence of $\left\{\operatorname{det} D_{\beta}^{\alpha} u_{\ell}\right\}$ has a subsequence that converges weakly in $L^{q / k}$. However, (5) implies that the only possible weak limit of any convergent subsequence is $\operatorname{det} D_{\beta}^{\alpha} u$. It follows by standard arguments (which you should know!) that the whole sequence converges weakly in $L^{q / k}$, and that the weak limit is $\operatorname{det} D_{\beta}^{\alpha} u$.

