some theorems about determinants

Theorem 1 is a bit different from the presentation I gave during the lecture, and everything following Theorem 1 was not covered during the lecture. Please read it (and let me know if you find any misprints).

Theorem 1. Suppose that u and v belong to $W^{1,n}(U; \mathbb{R}^n)$ and that $u - v \in W^{1,n}_0(U)$. Then

$$\int_U \det Du \ dx = \int_U \det Dv \ dx$$

(compare Theorems 1 and 2 in Section 8.1, Evans)

Proof. **1**. Given $u \in W^{1,n}(U)$, we define $j(u): U \to \mathbb{R}^n$ by

$$j^{i}(u) := \det (u_{x_{1}}, \dots, u_{x_{i-1}}, u, u_{x_{i+1}}, \dots, u_{x_{n}}).$$

The notation on the right-hand side means: the determinant of the matrix whose columns are the given vectors, arranged in the given order. We claim that

(1)
$$\det Du = \frac{1}{n} \sum_{i=1}^{n} \partial_{x_i} j^i(u)$$

To see this, first note that the multilinearity of the determinant implies that

$$\partial_{x_i} j^i(u) = \det \left(u_{x_1 x_i}, \dots, u_{x_{i-1}}, u, u_{x_{i+1}}, \dots, u_{x_n} \right) + \det \left(u_{x_1}, u_{x_2 x_i}, \dots, u_{x_{i-1}}, u, u_{x_{i+1}}, \dots, u_{x_n} \right) + \dots + \det \left(u_{x_1}, \dots, u_{x_{i-1}}, u, u_{x_{i+1}}, \dots, u_{x_n x_i} \right) = \det Du + \sum_{k \neq i} T_{ik}$$

where T_{ik} is the determinant of the matrix with $u_{x_kx_i}$ in the kth column, u in the *i*th column, and u_{x_ℓ} in the ℓ th column if $\ell \notin \{i, k\}$. Basic properties of determinants imply that $T_{ik} = -T_{ki}$, so we find that

$$\sum_{i=1}^{n} \partial_{x_i} j^i(u) = \det Du + \frac{1}{n} \sum_{i=1}^{n} \sum_{k \neq i} T_{ik} = \det Du$$

since T_{ik} and T_{ki} cancel each other out.

2. Now suppose that u and v belong to $C^1(U; \mathbb{R}^n)$ and that u - v is smooth with compact support in U. Then j(u) = j(v) in a neighborhood of ∂U , and it follows that

$$\int_{U} \det Du = \int_{U} \nabla \cdot j(u) = \int_{\partial U} j(u) \cdot \nu = \int_{\partial U} j(v) \cdot \nu = \int_{U} \det Dv$$

3. Now suppose that u belongs to $C^1(U; \mathbb{R}^n)$ and that $v = u + \phi$, for $\phi \in W_0^{1,n}(U)$. By definition of $W_0^{1,n}(U)$, there exists a sequence $\{\phi_k\}$ of smooth functions with compact support, such that $\|\phi_k - \phi\|_{W^{1,n}} \to 0$ as $k \to \infty$. Then we conclude that

$$\int_U \det Dv \, dx = \int_U \det D(u+\phi) \, dx = \lim_{k \to \infty} \int_U \det D(u+\phi_k) \, dx = \int_U \det Du$$

where the last equality holds for every k, by Step 2. Finally, a similar approximation argument

$$\int_U \det Du = \int_U \det Du$$

if it is merely true that $u \in W^{1,n}(U)$ and $u - v \in W_0^{1,n}(U)$.

It should be obvious that the convergence $\|\phi_k - \phi\|_{W^{1,n}} \to 0$ as $k \to \infty$ implies that

$$\int_{U} \det D(u + \phi_k) \, dx \to \int_{U} \det D(u + \phi) \quad \text{as } k \to \infty.$$

(This fact was used above.)

allows us to conclude that

For $1 \le k \le n$, let us write

$$I(k,n) := \{ \alpha \in \mathbb{Z}^k : 1 \le \alpha_1 < \ldots < \alpha_k \le n \}.$$

For $\alpha, \beta \in I(k, n)$, we write $D^{\alpha}_{\beta}u$ to denote the $k \times k$ matrix with $u^{\alpha_i}_{x_{\beta_j}}$ in the (i, j) position. We will also write u^{α} to denote the (column) vector

$$u^{\alpha} = \left(\begin{array}{c} u^{\alpha_1} \\ \vdots \\ u^{\alpha_k} \end{array}\right)$$

Then $D^{\alpha}_{\beta}u = (u^{\alpha}_{x_{\beta_1}}, \dots, u^{\alpha}_{x_{\beta_k}})$ where the right-hand side denotes the matrix whose columns are the given vectors arranged in the given order.

Having introduced this notation, we can see that

(2)
$$\det D^{\alpha}_{\beta} u = \frac{1}{k} \sum_{i=1^k} \partial_{x_{\beta_i}} j^i_{\beta}(u^{\alpha})$$

where

(3)
$$j^i_{\beta}(u^{\alpha}) = \det(u^{\alpha}_{x_{\beta_1}}, \dots, u^{\alpha}_{x_{\beta_{i-1}}}, u^{\alpha}, u^{\alpha}_{x_{\beta_{i+1}}}u^{\alpha}_{x_{\beta_k}})$$

This follows by exactly same the calculation carried out in Step 1 of the above proof.

A determinant of a sub-matrix of Du is often called a "minor of Du". We may also speak of a "minor of order k" or a " $k \times k$ minor" if the submatrix in question is a $k \times k$ matrix. An easy adaptation of the proof given above shows that $L(Du) := \det D^{\alpha}_{\beta}u$ is a null Lagrangian for every α, β as above.

Next we prove

Lemma 1. (Weak continuity of determinants) Assume that $n < q < \infty$ and that

 $u_{\ell} \rightharpoonup u$ weakly in $W^{1,q}(U; \mathbb{R}^n)$.

Then

$$\det Du_{\ell} \rightharpoonup \det Du \quad weakly \text{ in } L^{q/n}(U).$$

(Compare the Lemma in Section 8.2.4b, Evans; this is the same lemma with a slightly different proof.)

For the proof we will need the following standard (and very useful) fact.

Lemma 2. Suppose that $\{f_\ell\}, \{g_\ell\}$ are sequences of functions and f, g are functions such that $f_\ell \to f$ strongly in $L^p(U)$, $g_\ell \to g$ weakly in $L^q(U)$ for some p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} < 1$. Then

 $f_{\ell}g_{\ell} \rightharpoonup fg$ weakly in $L^r(U)$.

Proof of Lemma 2. Fix $h \in L^{r'}$, where $\frac{1}{r} + \frac{1}{r'} = 1$. We must show that

$$\int f_{\ell}g_{\ell}h\,dx \quad \to \int fgh\,dx$$

as $k \to \infty$. To do this, we write

$$\int (f_{\ell}g_{\ell}h - fgh) \, dx = \int (f_{\ell} - f)g_{\ell}h \, dx + \int (g_{\ell} - g)fh \, dx.$$

For the first integral, since $\frac{1}{p} + \frac{1}{q} + \frac{1}{r'} = 1$, Holder's inequality implies that

$$\left|\int (f_{\ell} - f)g_{\ell}h\,dx\right| \le \|f_{\ell} - f\|_{p}\|g_{\ell}\|_{q}\|h\|_{r'} \le C\|f_{\ell} - f\|_{p} \to 0$$

as $k \to \infty$. that a weakly convergent sequence is bounded, which implies in particular that there exists some C such that $\|g_{\ell}\|_q \leq C$. This fact is a consequence of the Banach-Steinhaus Theorem (also known as the Uniform Boundedness Principle).

Also, let q' be the Holder dual of q, so that $\frac{1}{q'} = 1 - \frac{1}{q}$. Then $\frac{1}{q'} = \frac{1}{p} + \frac{1}{r'}$, so Holder's inequality implies that $\|fh\|_{q'} \leq \|f\|_p \|h\|_{r'}$. Thus $fg \in L^{q'}$, and the weak convergence $g_\ell \to g$ weakly in L^q implies that $\int (g_\ell - g)fh \, dx \to 0$ as $k \to \infty$.

Using the Lemma we give the

Proof of Lemma 1. We will in fact prove that if $\alpha, \beta \in I(k, n)$ for any $k \in \{1, \ldots, n\}$, and

(4) if
$$u_{\ell} \to u$$
 weakly in $W^{1,q}(U)$, then det $D^{\alpha}_{\beta}u_{\ell} \to \det D^{\alpha}_{\beta}u$ weakly in $L^{q/2}$

We prove this by induction on k.

The case k = 1 is clear.

Suppose we have proved (4) for 1, 2, ..., k-1, for $k \leq n$. Fix $\alpha, \beta \in I(k, n)$, and assume that $u_{\ell} \to u$ weakly in $W^{1,q}(U)$.

For any smooth function v with compact support, note from (2), (3) that

$$\int_U v \det D^{\alpha}_{\beta} u_{\ell} \, dx = -\int_U \sum_i v_{x_i} j^i_{\beta}(u^{\alpha}_{\ell}) \, dx$$

after integration by parts. Note that for each i and ℓ ,

 $j^i_{\beta}(u^{\alpha}_{\ell}) = \text{ sum of terms of the form } (u^{\ell}_{\alpha_k}) \times [\text{ minor of } Du_{\ell} \text{ of order } (k-1)].$

Rellich's compactness theorem implies that that $u_{\ell}^{\alpha_k} \to u^{\alpha_k}$ strongly in L^q as $q \to \infty$, and the induction hypothesis implies that every sequence of minors of Du_{ℓ} of order k-1 converges weakly in $L^{q/(k-1)}$ to the corresponding minor of Du. Thus it follows from Lemma 2 that $j^i_{\beta}(u^{\alpha}_{\ell}) \rightharpoonup j^i_{\beta}(u^{\alpha})$ as $\ell \to \infty$. Consequently,

(5)
$$\int_{U} v \det D^{\alpha}_{\beta} u_{\ell} \, dx \to -\int_{U} \sum_{i} v_{x_{i}} j^{i}_{\beta}(u^{\alpha}) \, dx = \int_{U} v \det D^{\alpha}_{\beta} u \, dx$$

as $\ell \to \infty$.

Note that $|\det D^{\alpha}_{\beta}u_{\ell}| \leq C|Du_{\ell}|^{k}$ pointwise, which implies that $||\det D^{\alpha}_{\beta}u_{\ell}||_{q/k} \leq C|||Du_{\ell}|^{k}||_{q/k} \leq ||Du_{\ell}||_{q}^{k} \leq C$ (again by the Banach-Steinhaus Theorem.) Thus every subsequence of $\{\det D^{\alpha}_{\beta}u_{\ell}\}$ has a subsequence that converges weakly in $L^{q/k}$. However, (5) implies that the only possible weak limit of any convergent subsequence is $\det D^{\alpha}_{\beta}u$. It follows by standard arguments (which you should know!) that the whole sequence converges weakly in $L^{q/k}$, and that the weak limit is $\det D^{\alpha}_{\beta}u$.

1		1
1		
1		