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Summary of existence and uniqueness results for 2nd order linear elliptic PDE

We are interested in studying existence and uniqueness of solutions of the problem

(1) Lu = f in U, u = 0 on ∂U

where U is a bounded open subset of Rn with C1 boundary and

Lu = −
∑
i,j

(
aij(x)uxi

)
xj

+
∑

i

bi(x)uxi + c(x)u.

The coefficients are all assumed to be bounded and measurable on U , and we make the crucial
ellipticity assumption

(2)
∑
i,j

aij(x)ξiξj ≥ θ|ξ|2 for a.e. x ∈ Uand every ξ ∈ Rn.

We will generally assume that f ∈ H−1(U). This of course allows us to consider f ∈ L2(U), since
L2(U) ⊂ H−1(U).

Recall that we say that u is a weak solution of (1) if u ∈ H1
0 (U) and

(3)
∫

U

∑
i,j

aij(x)uxivxj +
∑

i

bi(x)uxiv + c(x)uv

 dx = 〈f, v〉 for all v ∈ H1
0 (U).

We will write B[u, v] to indicate the expression on the left-hand side of (3). Note that if u is smooth
enough, then B[u, v] = (Lu, v)L2 .

Here is a summary of the overall strategy we have used.

(1) Change the problem to an easier problem! Prove existence and uniqueness for weak solutions
of the problem

(4) Lγu := Lu + γu = f in U, u = 0 on ∂U

* main tool: the Lax-Milgram Theorem, which is based on the Riesz Representation
Theorem, which asserts that given a (real) Hilbert space H and a bounded linear functional
` : H → R, there exists a unique u ∈ H such that (u, v) = `(v) for all v ∈ H.

The bilinear form B[·, ·] appearing in the Lax-Migram Theorem can be thought of as
resembling a Hilbert space inner product without the symmetry assumption. (In fact if B
is symmetric, ie if B[u, v] = B[v, u] for all u and v, then B is equivalent to the Hilbert space
inner product.)

* The ellipticity assumption and the extra term γu in (4) are needed in verifying the
hypothesis Bγ [u, u] ≥ ‖u‖2

H1
0
, which is needed to apply the abstract Lax-Milgram Theorem

to the concrete problem (4). Here Bγ [u, v] := B[u, v] + γ
∫
U uv dx.

* Note that in this discussion, (·, ·) denotes an abstract Hilbert space inner product for
purposes of the abstract Lax-Milgram Theorem, and the inner product in the Hilbert space
H1

0 in the proof of the existence and uniqueness theorem for (4).
(2) Once we have an existence theorem at hand for (4), we can rephrase all questions about (1)

as questions about an equation involving a compact operator.
(a) We write u = L−1

γ f if u is the unique weak solution of (4).
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2 (b) Then

(5) u is a weak solution of (1) ⇐⇒ (I −K)u := g for K := γL−1
γ , g = L−1

γ f.

Moreover, it is easy to check that K : L2 → L2 is compact. Thus the abstract
Fredholm Alternative for equations of the form (I−K)u = g implies a similar Fredholm
alternative for (1). It follows that (1) has a weak solution for all f ∈ H−1(U) if and
only if the homogeneous problem (ie f = 0) has a unique weak solution (among other
conclusions).

(c) Similarly, Lu = λu in U , u = 0 on ∂U , if and only if Lγu = (λ + γ)u, or equivalently
Ku = γ

γ+λu.
In other words,

(6) λ is an eigenvalue for u ⇐⇒ γ

γ + λ
is an eigenvalue of K

Thus abstract results about eigenvalues of compact operators (there are at most count-
ably many eigenvalues, all of finite multiplicity, and the only possible accumulation
point of the sequence of eigenvalues is 0) translate to results about eigenvalues of L.
This yields: L has at most countably many eigenvalues, all of finite multiplicity, and
if there are countably many then they form a sequence tending to +∞.
(Note that if λ + γ ≤ 0, ie if −λ > γ, then the verification that Bγ satisfies the hypotheses of
the Lax-Milgram theorem implies uniqueness of solutions of the problem Lu − λu = 0 in U ,
with boundary conditions u = 0 on ∂U . Thus every eigenvalue of L is greater than −γ.)

(d) By combining the two previous results, we find that the problem

Lu = λu + f in U, u = 0 on ∂U

has a unique weak solution for every f ∈ H−1(U) unless λ is an eigenvalue of L, which
implies that the problem is uniquely solvable for all but countably many values of λ.

(e) Furthermore, if bi = 0 for all i, then K = γL−1
γ is symmetric (that is, (Ku, v) =

(u, Kv) for all u, v ∈ L2(U)) and so one can appeal to abstract theory about the
eigenvalues and eigenfunctions of compactsymmetric operators, and deduce conclusions
about eigenvalues and eigenfunctions of L. This leads to: if bi = 0 for all i, then L2(U)
has an orthonormal basis consisting of eigenfunctions of L.

(f) In all of the above theory involving the compact operator K, the Hilbert space is L2(U),
and (·, ·) denotes the L2 inner product, rather than the H1

0 inner product as earlier.
THis is because it is natural to prove that K is compact as an operator on L2.

(g) In all of this theory, the crucial ellipticity assumption is used in two ways. First, it
guarantees that the Lax-Milgram machinery is applicable, so that we can appeal to ear-
lier results to rewrite our original problem (1) as in (5) and obtain further equivalences
such as (6).
Second and more subtly, the ellipticity is resposible for the estimate ‖Ku‖H1

0
≤ C‖u‖L2 ,

and this in turn (together with Rellich’s compactness theorem) is responsible for the
fact that K : L2 → L2 is compact, and hence that all the machinery used above is
applicable.


