University of Toronto
Department of Mathematics
MAT 235Y1Y
Calculus II

TERM TEST \# 3
Tuesday, March 13, 2001
Time allowed: 2 hours

Last Name:

Given Name: \qquad

Student Number: \qquad

Lecture Section: \qquad Prof. Name: \qquad

INSTRUCTIONS:

- No aids are allowed.

FOR TA USE ONLY	
Question	Mark
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 20$
5	$/ 15$
6	
TOTAL	

1. a) Convert the integral given below in polar coordinates to an equivalent integral in Cartesian coordinates and evaluate the latter.

$$
I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\csc \theta} r^{4} \sin ^{2} \theta \cos \theta d r d \theta
$$

Region of integration: $\left\{\begin{array}{l}\frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{2} \\ 0 \leqslant r \leqslant \csc \theta\end{array}\right.$

3 earth
(7)

$$
=\int_{0}^{1} \frac{1}{2} y^{4}=\frac{1}{10}
$$

2 marks
b) Find the volume of the region in the first octant that lies between the cylinders $r=1$ and $r=2$ and between the $x y$-plane and the surface $z=x y$.
Use "cyl. cord". Our solid is:
(8)

2. Find the mass of the solid sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$. If the density is $\delta(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.

We spherical cord:

5 males
3. Convert $\int_{0}^{\sqrt{2}} \int_{-\sqrt{2-y^{2}}}^{\sqrt{2-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} d z d x d y$
a) to cylindrical coordinates

$$
\text { Regin of integration : }\left\{\begin{array}{l}
0 \leq y \leq 2 \\
-\sqrt{2-y^{2}} \leq x \leq \sqrt{2-y^{2}} \\
\sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{4-x^{2}-y^{2}}
\end{array}\right.
$$

(5)
$\int_{0}^{\pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} r^{3} \sin ^{2} \theta d z d r d \theta \quad \Delta 3$ marks

b) to Spherical coordinates.

$$
\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{\pi / 4} \rho^{4} \sin ^{2} \theta \sin ^{3} \phi d \phi d \rho d \theta
$$

2 masks
3 marks
c) Evaluate one of the integrals.

$$
\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{\pi / 4} \rho^{4} \sin ^{2} \theta \sin ^{3} \phi d \phi d \rho d \theta=\int_{0}^{\pi} \sin ^{2} \theta d \theta \int_{0}^{2} \rho^{4} d \rho \int_{0}^{\frac{\pi}{4}} \sin ^{3} \phi d \phi
$$

(5)

I mosh
nocrhs

$$
\begin{aligned}
& =\left(\frac{32}{5}\right) \int_{0}^{\pi} \frac{1}{2}(1-\cos (2 \theta)) d \theta \int_{0}^{\pi / 4}\left(\sin \phi-\sin \phi \cos ^{2} \phi\right) \phi \phi \\
& =\left(\frac{32}{5}\right)\left(\frac{\pi}{2}\right)\left[-\cos \phi+\frac{1}{3} \cos ^{3} \phi\right]_{0}^{\pi / 4}=\frac{16 \pi}{5}\left(\left[-\frac{\sqrt{2}}{2}+\frac{2 \sqrt{2}}{24}+1-\frac{1}{3}\right]\right.
\end{aligned}
$$

$$
=\frac{4 \pi}{15}[8-5 \sqrt{2}]
$$

2 maths
4. Find the value of the region bounded by $z=x^{2}+y^{2}, z=0$, and $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$.
(20) Using "Gyhid cord." $z=r^{2} \quad z=0 \quad r^{4}=r^{2} \cos (2 \theta)$

$$
V=4 \int_{0}^{\pi / 4} \int_{0}^{\sqrt{\omega(2 \theta)}} \int_{0}^{r^{2}} r d z d r d \theta
$$

$$
r^{2}=\cos (2 \theta)
$$

7 masks

$$
\begin{aligned}
& =4 \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{\cos (2 \theta)}} r^{3} d r d \theta=\int_{0}^{\frac{\pi}{4}} \cos ^{2}(2 \theta) d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \frac{1}{2}(1+\cos (4 \theta)) d \theta=\frac{1}{2}\left[\theta+\frac{1}{4} \sin (4 \theta)\right]_{0}^{\pi / 4} \\
& =\frac{1}{2}\left[\frac{\pi}{4}+0\right]=\frac{\pi}{4}
\end{aligned}
$$

 6 mush

7 marks
5. Let R be the region in the first quadrant of the $x y$-plane bounded by the hyperbolas $x y=4, x y=9$ and the lines $y=x, y=4 x$. Use the transformation $u=\frac{y}{x}, v=x y$ to rewrite $\int_{R} \int(\sqrt{y / x}+\sqrt{x y}) d x d y$ as an integral over an appropriate region R^{*} in the $u v$-plane. Then evaluate the $u v$-integral over R^{*}.
(20)

$$
\begin{aligned}
& x=\sqrt{\frac{v}{u}} \quad y=\sqrt{u v}
\end{aligned}
$$

$$
v=9
$$

$$
\frac{d x}{d u}=-\frac{1}{2} u^{-3 / 2} v^{1 / 2} \quad \frac{d x}{d v}=\frac{1}{2} u^{-1 / 2} v^{-1 / 2}
$$

$$
\frac{d y}{d u}=\frac{1}{2} u^{-1 / 2} v^{1 / 2} \quad \frac{d v}{d v}=\frac{1}{2} u^{1 / 2} v^{-1 / 2}
$$

6. Find the area of the surface cut from the bottom of the paraboloid $z=x^{2}+y^{2}$ by the plane

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r^{2}} d r d \theta \\
& =(2 \pi)\left[\frac{1}{12}\left(1+4 r^{2}\right)^{3 / 2}\right]_{0}^{2} \\
& =\frac{\pi}{6}\left[17^{3 / 2}-1\right] \leftarrow 5 \text { marks }
\end{aligned}
$$

5 marker

