5. Evaluate the line integral $\int_{C} F \cdot d r$, where $F=\left(1, X_{2}^{2}+Y\right)$, and the curve C consists of the part of the circle $x^{2}+y^{2}=4$ from (2,0) to (0,2),
followed by the line segment from $(0,2)$ to (1,5).
(15 marks)

$$
\begin{aligned}
& \int_{c} F \cdot d r=\int_{c_{1}} F d r-\int_{c_{2}}=\cdot d r \\
& C_{1}:\left\{\begin{array}{l}
x=2 \cos t \\
y=2 \sin t
\end{array} \quad 0 \leqslant t \leqslant \frac{\pi}{2}\right. \\
& \int_{C_{1}} F \cdot d r=\int_{0}^{\pi / 2}\left(1,4 \omega^{2} t+2 \sin =1\left(-2 \sin t, 2 \sin ^{2}\right) d t\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}\left(2 \sin t+8 \operatorname{coc} t-8 \sin ^{2} \frac{1}{2} \operatorname{ses} t+4 \sin t \operatorname{sen} t\right) d t \\
& \left.=-2 \cos t+8 \sin t-\frac{8}{3} \sin ^{2} \frac{1}{2}+2 \sin ^{2} \frac{1}{2}\right]_{0}^{\pi / 2} \\
& =8-\frac{8}{3}-2-2=\frac{28}{3}
\end{aligned}
$$

$$
c_{2}:\left\{\begin{array}{l}
x=t \\
y=2+3 t
\end{array} \quad 0 \leqslant t \leqslant 1\right.
$$

$$
\begin{aligned}
S_{C_{2}} F \cdot d r & =\int_{0}^{1}\left(1, t^{2}+2+3 \frac{1}{t}\right)(i, 3) d t \\
& \left.=\int_{0}^{1}\left(7+9 t+3 \frac{1}{2}\right) d t=\frac{1}{2}+\frac{9 t^{2}}{2}+t^{3}\right]_{0}^{1} \\
& =8+\frac{9}{2}=\frac{25}{2} \\
S_{C} F \cdot d r & =\frac{28}{3}-\frac{25}{2}=\frac{56-5}{6}=\frac{13!}{1}
\end{aligned}
$$

6. a) Consider the vector field $F(x, y)=\left(y^{2} \cos x-y^{2} e^{x y}, 2 y+2 y \sin x-(1+x y) e^{x y}\right)$ Decide whether or not $F(x, y)$ has a potential function, and find a potential function if there is one.
b) Evaluate $\int_{c} 3 d x+2 y z d y+\left(1+y^{2}\right) d z$, where C is the curve parametrized by $r(t)=\left(\frac{2}{1+\sin t}, \frac{2}{1+\cos t},-\sin t\right), 0 \leq t \leq \pi / 2$.
$x^{3 \times 12 d} 5$
a)

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=2 \operatorname{jin} \cos x-2 \cdot i e^{x u}-x y^{2} e^{x u} \\
& \frac{\partial v}{\partial x}=2 y \cos x-y e^{x u}-y_{c}\left(1+x, y ; e^{x u}=2 x_{c} \cos x-2 y e^{x y}-x y^{2} e^{x y}\right. \\
& \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} \text { tinafors, }=(x, y ; \text { has }, \text {, insuriai fucuction } \\
& \int\left(y^{2} \cos x-y^{2} e^{x y}\right) d x=y^{2} \sin x-y e^{x y}+h(y)
\end{aligned}
$$

Then $f(x, y)=y^{2}$ am $x-y e^{x y}+2(y)$, and

$$
\frac{\partial f}{\partial y}=2 \dot{y} \sin x-e^{x \ddot{x}}-x y e^{x \underline{y}}-x^{\prime}(y)
$$

Therefore $\lambda_{i}^{\prime}\left(j_{\sigma}\right)=2 \cdot \hat{\sigma}$, and ${ }_{T}(x, y)=y^{2} \sin x-y e^{x y}+y^{2}+c$
b) Note that $f(x, y, z)=\bar{x} \div \div y^{2} \overline{\hat{c}} \div \bar{y}$ impocies

$$
\nabla f(x, y, z)=\left(3,2 y 2, y^{2}+1\right) \text {, therefore }
$$

$\int_{c} 3 d x+2 \cdot y z^{2} c^{2}+\left(i+y^{2}\right) d z=\frac{p}{f}(3)-f(A)$ where 3 maris $\rightarrow \begin{aligned} & C \\ & A \text { and } B \text { an is endpoint, it the meme } C \text { } C\end{aligned}$

$$
A=(2,1,0) \text { and } B=(1,2,-1)
$$

$$
\text { Limarhs } \rightarrow \begin{aligned}
& A=(2,1,0) \text { and } 3=(1,2,-1) \\
& \left(3 d_{x}+2 \cdot 3 d y+\left(1+y^{2}\right) d_{3}=3-4-1-6=-8\right.
\end{aligned}
$$

7. Evaluate $\int\left(y+\ln \left(1+x^{3}\right)\right) d x+x^{2} d y$, where the curve C is the boundary of the region enclosed between the parabola $y=x^{2}$ and the line $y=2 x$, traversed once, in the counterclockwise direction.

$$
\begin{aligned}
& \int_{C}\left(y+\ln \left(1+x^{3}\right)\right) d x-x^{3} d y \\
= & \int_{R}(2 x-1) d A \\
= & \int_{0}(2 x-i) d y \\
= & \left.\int_{0}^{2}(2 x y-y)\right]_{x^{2}}^{2 x} d x=\int_{0}^{2}\left(4 x^{2}-2 x-2 x^{3}-x^{2}\right) d x \\
= & \frac{5 x^{3}}{3}-x^{2}-\frac{x^{4}}{2} \int_{0}^{2}=\frac{40}{3}-4-8=\frac{4}{3}
\end{aligned}
$$

$$
0 \leq x \leq 2
$$

$$
x^{2} \leq 1 \leq 2 x
$$

