2. SAMPLE UUES $11 U N S$ FKUM PREVIOUS TEST \#2 PAPERS.
3. Let $f(x, y)=x^{2}-x y-y^{2}$.
a) $(6$ marks $)$ Compute the directional derivative $D_{u_{1}} f(2,1)$, where $u_{1}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
b) $(4$ marks $)$ Find all unit vectors
b) (4 marks) Find all unit vectors u_{2} for which $D_{u_{2}} f(2,1)=0$.
c) (5 marks) Find the unit vector u_{3} for which $D_{u_{3}} f(2,1)$ attains its maximum value and the unit vector u_{4} for which $D_{u_{4}} f(2,1)$ attains its minimum value.
4. Let S denote the surface given by the equation $x^{2}+y^{2}+2 z^{2}-x y+x z+y z-z=6$.
a) (8 marks) Find an equation of the plane that is tangent to the surface S at the point ($1,1,1$).
b) (7 marks) At what points of the surface S is the tangent plane parallel to the xy-plane ?
5. a) (10 marks) Consider the function $f(x, t)=\frac{1}{\sqrt{t}} e^{-u}$, where $u=\frac{(x-b)^{2}}{a^{2} t}, a \neq 0, t>0$. Simplify the expression $a^{2} \frac{\partial^{2} f}{\partial x^{2}}(x, t)-4 \frac{\partial f}{\partial t_{r}}(x, t)$
b) (10 marks) Show that $g(x, y, z)=\frac{\partial t_{r}}{\partial g} \quad \partial g$, where $r=\sqrt{e^{2}+y^{2}+z^{2}}$ satisfies the differential equation $x \frac{\partial g}{\partial x}+y \frac{\partial g}{\partial y}+z \frac{\partial g}{\partial z}=(1-r) g$.
6. Indicate in each of the following cases whether the given statement is true or false. Give a brief and clear explanation for each of your answers.
d) (3 marks) Any level surface of the function $f(x, y, z)=x^{2}+y^{2}-z^{2}$ is either a cone or a
hyperboloid of one sheet. $\left(3\right.$ marks) The function $f(x, y)=\left\{\begin{array}{cl}\frac{x-y}{x+y} & \text { if } y \neq-x \\ 1 & \text { if } y=-x\end{array} \quad\right.$ is continuous at $(0,0)$.
c) $(3$ marks $)$ Let $f(x, y)=x^{x y}$. Then $f_{x x}(1,1)=2$.
d) (3 marks) Let y be implicitly defined as a function of x by the equation $\left(x^{2}+y^{2}\right)^{2}=3 x^{2} y+y$, then when $x=1$ and $y=1$, the value of $d y / d x$ is $-1 / 2$.
(Please turn over)
7. Let w denote a function of the variables u and v. If the change of variables $u=a x+y$ and $v=x+b y$ is made, then w can also be regarded as a function of x and y.
a) (5 marks) Express $\frac{\partial^{2} w}{\partial x \partial y}$ in terms of $\frac{\partial^{2} w}{\partial u^{2}}, \frac{\partial^{2} w}{\partial u \partial v}$ and $\frac{\partial^{2} w}{\partial v^{2}}$.
b) (5marks) Suppose that the function w satisfies the equation $\frac{\partial^{2} \frac{\partial v^{2}}{\partial w^{2}}}{\partial u^{2}}+2 \frac{\partial^{2} w}{\partial u \partial v}-8 \frac{\partial^{2} w}{\partial v^{2}}=0$. Find suitable values of a and b for which this given equation can be converted to the simpler form $\frac{\partial^{2} w}{\partial x \partial y}=0$.
c) (5 marks) Can you guess the general form of the function w of the variables x and y which satisfies the equation $\frac{\partial^{2} w}{\partial x \partial y}=0$? If so, then state the general form of the function $w(x, y)$.
8. a) (10 marks) Use differentials to approximate the value of the function $f(x, y)=\left(x^{3}+x y^{2}-6 y\right)^{2 / 3}$ at the point $(1.99,0.02)$.
b) (10 marks) Let S be the surface given by the equation $x^{2}+x z=y^{2}+z^{2}-4 y+5 z$. Determine the coordinates of all points on the surface S (if any), at which the tangent plane to S is parallel to
the plane $y=0$.
9. (20 marks) A rectangular box is placed inside the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1$ with sides parallel to the axes. What dimensions will give the box with the maximum volume?
10. Given the function $f(x, y)=x y+24 \ln x-3 y^{2} / 2-18 y$, where $x>0$.
a) (5 marks) Find all the critical points of this function.
b) (5 marks) Use the second-derivative test to classify each of the critical points found in part (a) as a saddle point, a local maximum or a local minimum.
c) (10 marks) Find the absolute maximum and the absolute minimum values of the given function f over the triangle $1 \leq x \leq 3,2 x \leq y \leq 6$.
11. (15 marks) Find the maximum and minimum values of the function $f(x, y)=x-2 y$, subject to the constraint $x^{2}-6 x+2 y^{2}=39$.
12. a) (7 marks) Evaluate $\iint y d A$, where R is the region $0 \leq x \leq y-y^{2}$.
b) (8 marks) Evaluate the integral $\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{\sqrt{1+y^{3}}} d y d x$.
13. (10 marks) Compute the volume of the region above the triangle with vertices $(0,0),(1,1)$ and $(0,2)$ and under the surface $z=9-x^{2}-y^{2}$.
