University of Toronto
 Department of Mathematics

MAT 235Y1Y
Calculus II

TERM TEST \# 2
Tuesday, January 23, 2001

Last Name:

Given Name:

Student Number:

INSTRUCTIONS:

- Answer all questions in the space provided.
- No aids are allowed.

FOR MARKERS ONLY	
Question	Mark
1	$/ 10$
2	$/ 20$
3	$/ 150$
4	$/ 10$
5	$/ 100$
6	

1. [15 marks]

Find the equations of the tangent plane and normal line of the surface given by the equation: $x y z-4 x z^{3}+y^{3}=10$ at the point $(-1,2,1)$.
2. [15 marks]

Let $f(x, y)=\arctan (y / x), P$ the point $(4,-4)$, and \mathbf{X} the vector $2 \mathbf{i}-3 \mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{X}. Also find a unit vector in the direction of which the directional derivative is maximum. What is the value of the maximum directional derivative.
3. [15 marks]

Let $f(x, y)=x^{2}-4 x y+y^{3}+4 y$.
(i) Find the critical points of f.
(ii) Ascertain which of the critical points are points of local maximum, minimum or saddle point.
4. (a) [10 marks]

A function $f(x, y)$ is said to be harmonic if $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$. Prove that the following functions are harmonic:
(i) $f(x, y)=\log \left(\sqrt{x^{2}+y^{2}}\right)$
(ii) $f(x, y)=e^{-x} \cos (y)+e^{-y} \cos (x)$
4. (b) [10 marks]

If $z=f(x, y)$ where $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial^{2} z}{\partial r \partial \theta}$ in terms of the first and second partial derivatives of z with respect to x and y and functions of r and θ.
5. (a) [10 marks]

The law for an ideal gas may be stated as $P V=c n T$, where $P=$ Pressure, $V=$ Volume, $T=$ Temperature, $n=$ no. of moles in the gas and $c=$ a constant. Therefore, each of the variables P, V, T can be regarded as a function of the other two. Show that

$$
\frac{\partial V}{\partial T} \frac{\partial T}{\partial P} \frac{\partial P}{\partial V}=-1
$$

5. (b) [10 marks]

Suppose z is defined implicitly as a function of (x, y) by the equation : $x^{2} y+y^{2} z+2 x z^{3}=4$.
Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ when $x=1, y=0, z>0$.
6. [15 marks]

Let $f(x, y, z)=4 x^{2}+y^{2}+5 z^{2}$. Find the point on the plane : $2 x+3 y+4 z=12$ at which f attains its extremum value.

