University of Toronto Department of Mathematics

MAT 235Y1Y Calculus II

TERM TEST # 2 Tuesday, January 23, 2001

Last Name:	 	 	
Given Name:	 	 	
Student Number:	 		

INSTRUCTIONS:

e[†]

- Answer all questions in the space provided.
- No aids are allowed.

FOR MARKERS ONLY				
Question	Mark			
1	/ 10			
2	/ 20			
3	/ 30			
4	/ 15			
5	/ 15			
6	/ 10			
TOTAL	/ 100			

.

~

Find the equations of the tangent plane and normal line of the surface given by the equation: $xyz - 4xz^3 + y^3 = 10$ at the point (-1, 2, 1).

.

Let $f(x,y) = \arctan(y/x)$, P the point (4,-4), and X the vector $2\mathbf{i} - 3\mathbf{j}$. Find the directional derivative of f at P in the direction of X. Also find a unit vector in the direction of which the directional derivative is maximum. What is the value of the maximum directional derivative.

٦

- Let $f(x,y) = x^2 4xy + y^3 + 4y$.
- (i) Find the critical points of f.
- (ii) Ascertain which of the critical points are points of local maximum, minimum or saddle point.

4. (a) [10 marks]

.

A function f(x,y) is said to be *harmonic* if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. Prove that the following functions are *harmonic*:

(i) $f(x, y) = log(\sqrt{x^2 + y^2})$

(ii)
$$f(x,y) = e^{-x}\cos(y) + e^{-y}\cos(x)$$

4. (b) [10 marks]

7

-

If z = f(x, y) where $x = r\cos\theta$, $y = r\sin\theta$, find $\frac{\partial^2 z}{\partial r \partial \theta}$ in terms of the first and second partial derivatives of z with respect to x and y and functions of r and θ .

5. (a) [10 marks]

The law for an ideal gas may be stated as PV = cnT, where P = Pressure, V = Volume, T = Temperature, n = no. of moles in the gas and c = a constant. Therefore, each of the variables P, V, T can be regarded as a function of the other two. Show that

$$\frac{\partial V}{\partial T} \ \frac{\partial T}{\partial P} \ \frac{\partial P}{\partial V} = -1$$

5. (b) [10 marks]

Suppose z is defined *implicitly* as a function of (x, y) by the equation : $x^2y+y^2z+2xz^3=4$. Find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ when x = 1, y = 0, z > 0.

-

-

Let $f(x,y,z) = 4x^2 + y^2 + 5z^2$. Find the point on the plane : 2x + 3y + 4z = 12 at which f attains its extremum value.