

UNIVERSITY OF TORONTO FACULTY OF ARTS AND SCIENCE

APRIL/MAY EXAMINATION: 1997

MAT 235 Y - CALCULUS FOR PHYSICAL AND LIFE SCIENCE II

EXAMINERS: P. GREINER, E. PRUGOVECKI, F. RECIO

		PLEASE DO NOT WRITE HERE		
INSTRUCTIONS:		QUESTION NUMBER	QUESTION VALUE	GRADE
1. ATTEMPT ALL QUESTIONS.		1	10	
2. SHOW AND EXPLAIN YOUR WORK IN ALL QUESTIONS.	•			
3. GIVE YOUR ANSWERS IN THE SPACE PROVIDED. USE BOTH SIDES OF PAPER, IF NECESSARY.		2	15	
4. DO NOT TEAR OUT ANY PAGES.	red.	3	15	
5. NO CALCULATORS OR ANY OTHER AIDS ARE PERMITTED.			10	
6. THIS EXAM CONSISTS OF EIGHT QUESTIONS. THE VALUE		•	10	
OF EACH QUESTION IS INDICATED (IN BRACKETS) BY THE QUESTION NUMBER.		5	10	
7. THIS EXAM IS WORTH 40% OF YOUR FINAL GRADE.		6	15	
8. TIME ALLOWED: 3 HOURS.			·	
9. PLEASE WRITE YOUR NAME, YOUR STUDENT NUMBER, AND YOUR SIGNATURE IN THE SPACE PROVIDED AT THE BOTTOM OF THIS PAGE.		7	15	
		8	10	
		TOTAL:	100	

NAME: MODEL SOLUTIONS

(FAMILY NAME. PLEASE PRINT.)

(GIVEN NAME.)

4

Consider the curve $r(t) = (t^3 - 2t, 3t^2, 2t\sqrt{3})$. a) (5 marks) Compute its arclength from t = 1 to t = 3. b) (5 marks) Compute its curvature at t = 0.

For

a)
$$\vec{r}'(t) = (3t^2 - 2, 6t, 2\sqrt{3})$$

 $||\vec{r}'(t)|| = \sqrt{(3t^2 - 2)^2 + (6t)^2 + (2\sqrt{3})^2}$
 $= \sqrt{9t^4 - 12t^2 + 4 + 36t^2 + 12}$
 $= \sqrt{9t^4 + 24t^2 + 16} = \sqrt{(2t^2 + 4)^2}$
 $||\vec{r}'(t)|| = 3t^2 + 4$
 $l = \int_1^3 (3t^2 + 4) dt = t^2 + 4t \int_1^3 = [34] \frac{3}{2}2$
b) $\vec{r}''(t) = (6t, 6, 0)$
 $\vec{r}'(0) = (-2, 0, 2\sqrt{3})$
 $\vec{r}'(0) = (-2, 0, 2\sqrt{3})$
 $\vec{r}'(0) = (-12\sqrt{3}, 0, -12)$
 $||\vec{r}'(0)|| = 4$, $||\vec{r}''(0)|| = 24$
 $K_0 = \frac{24}{4^3} = [\frac{2}{8}]$

Felix Reaio

(15 marks) Find the absolute maximum and the absolute minimum of the function $f(x,y) = x^2 + xy + y^2 + 3y$ on the disk $x^2 + y^2 \le 9$. Indicate the coordinates of the points where these extremes are reached.

Fuiding the critical pts:

$$f_x = 2x + y$$
 $f_y = x + 2y + 3$
For $f_x = 0 = f_y$: $\int \frac{2x + y}{x + 2y} = 0$ $x = 1 ; y = -2$
On the boundary $(x^2 + y^2 = 9)$
 $\int \frac{2x + y}{x + 2y + 3} = \frac{x + 2y + 3}{5}$ $y^2 = x^2 + 3x$
 $(x^2 + y^2 = 2\lambda x)$ $\frac{2x + y}{x} = \frac{x + 2y + 3}{5}$ $y^2 = x^2 + 3x$
 $f = x^2 + x^2 + 3x = 9$ $2x^2 + 3x - 9 = 0$
 $(2x - 3)(x + 3) = 0$ $x = -3$ or $x = \frac{3}{2}$
 $x = -3$; $y = 0$ $x = \frac{3}{2}$ or $x = \frac{3}{2}$
 $x = -3$; $y = 0$ $x = \frac{3}{2}$; $y = \pm \frac{3\sqrt{3}}{2}$
Teating the four possible extrema: 3
Abs. minimum : -3 at $x = 1$; $y = -2$
Abs. maximum : $9 + \frac{24\sqrt{3}}{4}$ at $x = \frac{3}{2}$, $y = \frac{3\sqrt{3}}{2}$

+ 3 19-42 19-42 9

ŵ

 $V = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{3-r^{2}} \tau d3 dr d\theta$ R: X+7=1 $= 2\pi \int (3r - 3r^3) dr$ 05751 $= 2\pi \int \frac{3r^2}{2} - \frac{3r^4}{4} \int = \frac{3\pi}{2}$ 0 60 524 $M_{xy} = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{3-r} \tau_{z} dz dr d\theta$ 2125353-12 $= 2\pi \int_{0}^{1} r \left[\frac{1}{2} \frac{3}{2} \right] dr$ $= \pi \int r(q-6r^2-3r^4) dr$ $= T_{1} \left[\frac{qr^{2}}{2} - \frac{3r^{4}}{2} - \frac{r^{6}}{2} \right]_{0}^{1} = \frac{5T_{1}}{2}$ $\overline{3} = \frac{5\pi}{3\pi} = 5$ 7 The Rymmetries: $|\bar{x}=\bar{y}=0; \bar{z}=\bar{3}$