FINAL EXAMINATIONS, APRIL 1995 MAT 235 Y - CALCOLOS FOR PHYSICAL AND LIFE SCIENCES II EXAMINERS: M. BA, G. NaGY, F. RECIO, Y. ZHONG

Eacli Cluestion is coonth 10 marks aacil

1. Let L_{1} be the straight line through the points $(5,2,-3)$ and $(4,6,-6)$. Let L_{2} be the straight line with symmetric equations $\frac{x}{3}=\frac{y+6}{-4}=\frac{z-2}{5}$.
a) (3 marks) Find parametric equations for the line L_{1}.
b) (3 marks) Find a unit vector ∇ such that v is orthogonal to both lines L_{1} and L_{2}.
c) (3 marks) Find an equation of the plane that contains the line L_{2} and is parallel to the line L_{1}.
d) (3 marks) Find the coordinates of the point of intersection of the line L_{2} and the plane $x+2 y-z=6$.
2. The position vector $r(t)=\left(2 t \sin t, 2 t \cos t, 1+\frac{t^{3}}{3}\right)$ describes the motion of an object along a curve C.
a) (3 marks) Show that $\left\|r^{\prime}(t)\right\|=2+t^{2}$, for all values of t.
b) (3 marks) Find the angle between the velocity vector and the horizontal plane at $t=\sqrt{2}$.
c) (2 marks) Find the arclength of the curve C from $t=0$ to $t=1$.
3. a) (5 marks) Given the function $f(x, y)=\frac{y}{x^{2}-y}$, where x and y are defined as implicit functions of the variables r and s by the equations $I x^{2}+2 x-s+3=0$ and $3 s y+I \sqrt{y}-2 s^{2}-7=0$.
Compute $\frac{\partial f}{\partial s}$ at $r=0, s=1$.
b) (5 marks) Let S be the surface $z=x e^{\frac{y}{x}}-3 x$. Show that for any point $P=(a, b, c)$ on the surface S, the line joining the points $(0,0,0)$ and P is tangent to the surface S.
4. Given the function $f(x, y)=x y+241 n x-\frac{3}{2} y^{2}-18 y$, where $x>0$.
a) (3 marks) Find all critical points of this function.
b) (3 marks) Use the Second Derivative Test to classify each of the critical points found in part (a) as a saddle point, a point where $f(x, y)$ has a local maximum or a point where $f(x, y)$ has a local minimum.
c) (4 marks) Find the absolute maximum and the absolute minimum of the function $f(x, y)$ over the triangle $1 \leq x \leq 3, \frac{2}{3} x \leq y \leq 2$.
5. (10 marks) A plane passes through the point $(1,2,3$) and intersects the coordinate axes at the points $(a, 0,0),(0, b, 0)$, and $(0,0, c)$, with $a>0$, $b>0$, and $c>0$. Find the values of a, b, and c such that the region bounded by this plane and the three coordinate planes in the first
6. a) (5 marks) Evaluate $\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{\sqrt{1+y^{3}}} d y d x$.
b) (5 marks) Evaluate $\iiint_{R} \frac{1}{1+x^{2}} d V$, where R is the region enclosed in the first octant between the planes $y=2, z=1$, and $z=x$.
7. (10 marks) Compute $\iint_{R}\left(y^{2}-x y\right) d A$, where R is the parallelogram enclosed by the lines $y-x=0, y-x=2,3 x-y=0$, and $3 x-y=1$.

Hint: Use a change of variables.
8. (10 marks) Let $R=\left\{(x, y, z): 0 \leq x, 0 \leq y, x+3 y \leq 6,0 \leq z \leq y^{2}\right\}$. Let S be the boundary of R, and let $n(x, y, z)$ denote an outer unit normal vector at each point of the surface S. Compute $\iint_{S}(F \cdot n) d S$, where $F(x, y, z)=\left(y^{2}+x^{2} z, 2 x y z, 1+y z-2 x z^{2}\right)$.
9. (10 marks) Verify Stokes' Theorem when $F(x, y, z)=(1,2 x z, x y)$, and S is the surface $z=7-x^{2}-y^{2}, z \geq 3$.

