Courtesy of the: Math, Actuary and Statistics Students Union

Note: A package containing all the tests and exam with solutions for MAT235Y for the scholastic year 1993-1994 shall be available soon. We apologize that we are unable to supply you with the solutions for Test2 at the moment but we have classes too.

DEPARTMENT OF MATHEMATICS University of Toronto MAT 235Y Test #2 Wed, Jan 12, 1994 6:30 - 8:30 p.m.

7 Problems, 10 Marks each.

1. Sketch some level curves of the function

$$f(x,y) = x^2 - 2x + 2y^2 + 4y$$

on the region $-2 \le x, y \le 2$. Add a little commentary describing the most interesting features of the function on this region.

2. Consider the function $f(x,y) = x^3 + 6xy + 3y^2 + 12x + 12y$ defined on the entire x-y plane.

a. Find all the critical points of f.

b. For each critical point, determine whether it is a local minimum, a local maximum, or a saddle.

3. Find the absolute maximum and minimum of the function

$$f(x,y) = (x^2 + y^2)e^x$$

on the disk $x^2 + y^2 \leq 9$.

4. Find the absolute maximum and minimum of the function

$$f(x,y) = x^2 - xy$$

on the square region $-1 \leq x, y \leq 1$.

5. A storage shed is being built in the shape of a rectangular box. Material for the floor costs \$50 per square meter. Material for the walls costs \$20 per square meter. Material for the roof costs \$30 per square foot. What are the dimensions for a shed of the largest volume that can be constructed for \$3840 worth of material.

6. Find the point on the intersection of the planes z = 2 and x - y + z = 3 which is closest to the point (2, 1, -1).

7. Find the least squares linear approximation y = mx + b to the data points (1,0), (2,1), (3,4). Here you are required to minimize the relevant function of m and b by taking its gradient and setting it equal to zero; you are not allowed to simply plug in to any general least-squares formula you may remember.