UNIVERSITY OF TORONTO DEPARTMENT OF MATHEMATICS
MAT 235 Y - CALCULUS FOR PHYSICAL AND LIFE SCIENCES
FALL-WINTER 1995-96
TEST \#1. NOVEMBER 14, 1995

NAME: STUDENT No: \qquad
(Family name. Please PRINT.) (Given name.)
INSTRUCTIONS: This test consists of six questions. The value of each question is indicated (in brackets) by the question number. Total marks: 45.
Show all your work in all questions. Give your answers in the space provided. Use both sides of the paper, if necessary. Do not tear out any pages.
No calculators or any other aids are permitted. This test is worth 15% of your course grade. Keep your student card visible on your table. Time allowed: 2 hours.

1. Let L_{1} denote the line with symmetric equations $\frac{x-1}{3}=\frac{y}{-4}=\frac{z+2}{2}$, and let L_{2} denote the line that passes through $P=(-2,1,0)$ and is parallel to L_{1}.
a) (4 marks) Find parametric equations of the line L_{2}. Determine the coordinates of the point at which the line L_{2} intersects the $X Z$-plane.
b) (4 marks) Find an equation of the plane that contains both lines L_{1} and L_{2}.
(a) Symmetric equations of L_{2} are $\frac{x+2}{3}=\frac{y-1}{-4}=\frac{z}{2}$

Sc parametric equations of L_{2} are $x=3 t-2 \quad y=-4 t+1$

$$
z=2 t
$$

so L_{2} intersects $X Z$ plane when $t=\frac{1}{4}$
So conoids of point of intersection are $\left(3 \frac{1}{4}-2, c, 2 \cdot \frac{1}{4}\right)$

$$
=\left(-\frac{5}{4}, c,-\frac{1}{2}\right)
$$

(b) We can find an equation of the plane if us have a pert on The plane and a normal vector. $(-2,1,0)$ is a point on the plane, and we can get a normal vector by takin? His cree product of the yoerers prole! to the plane.
One vector parallel (to the plane is $(3,-4,2)$ and arithen is $(-2,1,0)-(1,0,-2)=(-3,1,2)$ Thus, a nerval vector is $(3,-4,2) \times(-3,1,2)$ $=(-10,-12,-9)$, so an equation if the plane is

$$
-10(x+2)-12(y-1)-97=0
$$

2. Given the plane $x+2 y=1$ and the surface $z=3+x-y^{2}$.
a) (3 marks) Find a parametrization of the curve that is the intersection of the plane and the surface.
b) (4 marks) Find all points of the curve at which the tangent vector is horizontal.
(That is: points of the curve at which the z-component of the tangent vector is 0.)
(a) A point in the intersection of the plane and the surface satisfies $x+2 y=1$ and $z=3+x-y^{2}$
and hence $a l$ lo satisfies: $x=1-2 y$

$$
z=3+(1-2 y)-y^{2}=4-2 y-y=
$$

so the curve can be parameterized as follows

$$
x=1-2 t \quad y=t \quad z=4-2 t-t^{2}
$$

(b) The tangent vecte is $(-2,1,-2-2 t)$

This has $0 z$-component of $t=-1$, and $t=-1$ gives the point $(3,-1,5)$ or the curve.
3. Given the curve $r(t)=\left(t^{2}, 2 t, \ln t\right), t>0$.
a) (4 marks) Find the arclength of this curve between the points corresponding to $t=1$ and $t=2$.
b) (4 marks) Find the curvature of this curve at $t=1$.
(a)

$$
\begin{aligned}
& \int_{1}^{2} \sqrt{(2 t)^{2}+(2)^{2}+\left(\frac{1}{t}\right)^{2}} d t \\
= & \int_{1}^{2} \sqrt{4 t^{2}+4+\frac{1}{t^{2}}} d t=\int_{1}^{2} \sqrt{\frac{4 t^{4}+4 t^{2}+1}{t^{2}}} d t \\
= & \int_{1}^{2} \sqrt{\frac{\left(2 t^{2}+1\right)^{2}}{t^{2}}} d t=\int_{1}^{2} \frac{2 t^{2}+1}{t} d t \\
= & \int_{1}^{2} 2 t d t+\int_{1}^{2} \frac{1}{t} d t \\
= & {\left[t^{2}\right]_{1}^{2}+[\ln t]_{1}^{2}=4-1+\ln 2-\ln 1 }
\end{aligned}
$$

(b) Tannest vector is $\left(2 t, 2, \frac{1}{t}\right)$
and unit target vector i= $\frac{1}{\sqrt{(2 t)^{2}+2^{2}+\left(\frac{1}{t}\right)^{2}}}\left(2 t, 2, \frac{1}{t}\right)$.

$$
=\frac{t}{2 t^{2}+1}\left(2 t, 2, \frac{1}{t}\right)=\left(1-\frac{1}{2 t^{2}+1}, \frac{2 t}{2 t^{2}+1}, \frac{1}{2 t^{2}+1}\right)
$$

Diffricutiating this with respect to t gives $\left(\frac{4 t}{\left(2 t^{2}+1\right)^{2}} \cdot \frac{2\left(2 t^{2}+1\right)-(2 t)(4 t)}{\left(2 t^{2}+1\right)^{2}} \cdot \frac{-4 t}{\left(2 t^{2}+1\right)}\right.$ To find curvature at $t=1$, evaluate the norm of the at t and multyoly by $\frac{1}{\sqrt{\left(t^{2}+2^{2} \cdot\left(\frac{1}{t^{2}}\right.\right.}}$ aldo ocaluated at $t=1$.

We act $\frac{1}{2} \cdot \sqrt{\left.\left(\frac{4}{4}\right)^{2}+\left(-\frac{2}{2}\right)^{2}+(-4)\right)^{2}}=2$

