UNIVERSITY OF TORONTO DEPARTMENT OF MATHEMATICS MAT 235 Y - CALCULUS FOR PHYSICAL AND LIFE SCIENCES FALL-WINTER 1995-96

TEST #1. NOVEMBER 14, 1995

NAME:

STUDENT No:

(Family name. Please PRINT.) (Given name.)

INSTRUCTIONS: This test consists of six questions. The value of each question is indicated (in brackets) by the question number. Total marks: 45. Show all your work in all questions. Give your answers in the space provided. Use both sides of the paper, if necessary. Do not tear out any pages. No calculators or any other aids are permitted. This test is worth 15% of your course grade. Keep your student card visible on your table. Time allowed: 2 hours.

- 1. Let L_1 denote the line with symmetric equations $\frac{x-1}{3} = \frac{y}{-4} = \frac{z+2}{2}$, and let L_2 denote the line that passes through P=(-2,1,0) and is parallel to L_1 .
 - a) (4 marks) Find parametric equations of the line L₂. Determine the coordinates of the point at which the line L₂ intersects the XZ-plane.
 - b) (4 marks) Find an equation of the plane that contains both lines L_1 and L_2 .

(a) Symmetric equations of
$$L_2$$
 are $\frac{x+2}{3} = \frac{y-1}{-4} = \frac{z}{2}$
so parametric equations of L_2 are $x = 3t - 2$ $y = -4t + 1$
 $z = 2t$
so L_2 intersects XZ plane when $t = \frac{1}{4}$
so coolds of point of intersection are $(3\frac{1}{4}-2, 0, 2\frac{1}{4})$
 $= (-\frac{5}{4}, 0, \frac{1}{2})$
(b) We can find an equation of the plane if we have a point
on the plane and a normal vector. $(-2, 1, 0)$ is a point
on the plane and we can get a normal vector by taking the
circs product of the plane is $(3, -4, 2)$
and another is $(-2, 1, 0) - (1, 0, -2) = (-3, 1, 2)$
Thus, a normal vector is $(3, -4, 2) \times (-3, 1, 2)$
 $= (-10, -12, -9)$, so an equation of the plane is

- 2. Given the plane x + 2y = 1 and the surface $z = 3 + x y^2$.
 - a) (3 marks) Find a parametrization of the curve that is the intersection of the plane and the surface.
 - b) (4 marks) Find all points of the curve at which the tangent vector is horizontal.(That is: points of the curve at which the z-component of the tangent vector is 0.)

Page 2

Page 3

3. Given the curve $r(t) = (t^2, 2t, \ln t), t>0$.

(

- a) (4 marks) Find the arclength of this curve between the points corresponding to t=1 and t=2.
- b) (4 marks) Find the curvature of this curve at t=1.

$$\begin{aligned} (a) & \int_{1}^{2} \sqrt{(2t)^{2} + (2)^{2} + (\frac{1}{t})^{2}} dt \\ & = \int_{1}^{2} \sqrt{4t^{2} + 4 + \frac{1}{t^{2}}} dt = \int_{1}^{2} \sqrt{\frac{4t^{4} + 4t^{2} + 1}{t^{2}}} dt \\ & = \int_{1}^{2} \sqrt{(2t^{2} + 1)^{2}} dt = \int_{1}^{2} \frac{2t^{2} + 1}{t} dt \\ & = \int_{1}^{2} 2t dt + \int_{1}^{2} \frac{1}{t} dt \\ & = \left[t^{2} \right]_{1}^{2} + \left[l_{*} t \right]_{1}^{2} = 4 - 1 + l_{*} 2 - l_{*} 1 \\ & = 3 + l_{*} 2 \end{aligned}$$

$$(b) Tavant Vector is (2t, 2, \frac{4}{t}) \\ could could the equation vector is $\frac{1}{\sqrt{(2t)^{2} + 2^{2} + (\frac{4}{t})^{2}}} (2t, 2, \frac{4}{t}) \cdot \frac{1}{2t^{2} + 1} \cdot \frac{1}{2$$$