UNIVERSITY OF TORONTO
 DEPARTMENT OF MATHEMATICS
 MAT 235 Y - CALCULUS FOR PHYSICAL AND LIFE SCIENCES II
 FALL-WINTER 2002-2003
 GENERAL INFORMATION ABOUT TEST \#3.

1. DATE / TIME.

Tuesday, March 4, from 6:00 to 8:00 p.m.
Students with timetable conflicts will write the test on the same day from 4:00 p.m. to 6:00 p.m.
2. LOCATIONS.

Section L-0101 (Prof. Abou-Ward)
Section L-0201 (Prof. Uppal)
Section L-5101 (Prof. Recio)
writes the test in room CG-150 (Canadiana Gallery) writes the test in room CG-250 (Canadiana Gallery) writes the test in room WW-111 (Woodsworth College)
The 4:00 p.m. to 6:00 p.m. test, for students with timetable conflicts from any of the above sections, will be written in room MS-3153 (Medical Sciences Building).
3. ABOUT THE TEST.

Topics to be covered: textbook chapters 16 (sections $16.5,16.6,16.7,16.8,16.9$) and 17 (sections 17.1, 17.2, 17.3, 17.4, 17.5).

Duration: $\mathbf{2}$ hours. Value: $\mathbf{2 0 \%}$ of course mark. Aids allowed: calculators or any other aids are not allowed.
4. MATH AID CENTRES.

Sidney Smith Math Aid Centre. Location: Sidney Smith Building, room SS-1071
Hours of operation: Posted outside room SS-1071
Note: A tutor for MAT 235 is available at this location every Wednesday from 12 noon to $2 \mathrm{p} . \mathrm{m}$. and every Thursday from 4 p.m. to 6 p.m.
Victoria College Math Aid Centre. Location: Victoria College Building, room 006.
Hours of operation: Monday to Thursday, from 12:00 noon to 3:00 p.m.
St. Michael's Math Aid Centre. Location: John M. Kelly Library, room 202. Hours of operation: Monday to Thursday, from 12:00 noon to 3:00 p.m.
Woodsworth College Math Aid Centre. Location: Woodsworth College Building, room 115 Hours of operation: Posted outside room WW-115
University College Math Aid Centre. Location: University College Building, room 048 (basement) Hours of operation: Posted outside room UC-048
New College Math Aid Centre. Location: New College Building, (basement) Hours of operation: Posted outside MAC room.
5. SAMPLE QUESTIONS FROM PREVIOUS TEST \#3 PAPERS.

1. a) (10 marks) Compute the surface area of the part of the cone $z^{2}=4\left(x^{2}+y^{2}\right)$ that lies between the planes $z=2$ and $z=4$.
b) (15 marks) Evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right)^{2} d z d y d x$.
2. a) (10 marks) Evaluate the line integral $\int_{C} z d s$, where C is the curve given by the parametrization $x=2 t, y=t^{3} / 3, z=2 t^{3} / 3,0 \leq t \leq 1$.
b) (10 marks) Use Green's Theorem to evaluate the line integral $\int_{C}\left(y^{2}+\sin \left(x^{2}\right)\right) d x+\left(x+\cos \left(y^{2}\right)\right) d y$, where C is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(1,1)$, and from (1,1) to (0,0).
3. a) (10 marks) Let $\mathbf{F}(x, y, z)=x \mathbf{i}+z \mathbf{j}+a y \mathbf{k}$. Find all the values of the constant a, if any, for which $\operatorname{div}(\mathbf{F} \times \operatorname{curl} \mathbf{F})=\operatorname{div} \mathbf{F}$.
b) (15 marks) Let $\mathbf{G}(x, y)=e^{-2 y} \sin x \mathbf{i}+\left(2 e^{2 y}+2 e^{-2 y} \cos x\right) \mathbf{j}$. Find a function $g(x, y)$ such that $\nabla g=\mathbf{G}$, and use it to evaluate the line integral $\int_{C} \mathbf{G} \cdot d \mathbf{r}$, where C is the arc of the curve $y=\cos ^{3} x$, from $x=0$ to $x=\pi$.
4. (15 marks) Compute the mass of the solid in the first octant, bounded by the cylinder $y^{2}+z^{2}=1$, and the planes $x=0, y=0, z=0$ and $x+y=2$, if the density function is $\delta(x, y, z)=2 z /(1+y)$.
5. (15 marks) Evaluate $\iint_{R}(x+y)^{2} d A$, where R is the region bounded by the curves $x+y=2, x+y=4$, $x^{2}-y^{2}=4$ and $y=x$. (Hint: Use an appropriate change of variables.)
6. (15 marks) Find the area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=2$.
7. (15 marks) A lamina occupies the region $D=\{(x, y) \mid-\pi / 2 \leq x \leq \pi / 2,0 \leq y \leq \cos x\}$ and has density function $\rho(x, y)=y$. Find the coordinates of the centre of mass of this lamina.
8. (15 marks) Evaluate $\iiint_{R} z d V$, where R is the solid region in the first octant that lies between the sphere $x^{2}+y^{2}+z^{2}=1$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
9. (15 marks) Use the transformation $u=x+y, v=x-y$ to evaluate the integral $\iint_{T}(x+y)^{-2} d A$, where T is the trapezoidal region with vertices $(1,1),(3,3),(6,0)$, and $(2,0) . T$
10. (10 marks) Let C be the curve of intersection of the surfaces $z=x^{2}+y^{2}$ and $x=2 y$. Determine the work done by the force $\mathbf{F}(x, y, z)=(x-z) \mathbf{i}+(1-z) \mathbf{j}+y \mathbf{k}$ on a particle that moves along the curve C from $(0,0,0)$ to $(2,1,5)$.
11. (10 marks) Show that the line integral $\int_{C}\left(y^{2} \cos (x y) d x+(\sin (x y)+x y \cos (x y)) d y\right.$ is independent of path and evaluate it over any path from $(\pi, 1 / 2)$ to $(\pi / 2,3)$.
12. (10 marks) Use Green's Theorem to evaluate the line integral $\int_{C}\left(e^{x}-x y\right) d x+\left(x^{2}+\ln (1+y)\right) d y$, where C is the triangle with vertices $(0,0),(1,2)$, and $(0,3)^{c}$, positively oriented.
13. a) (5 marks) Let $\mathbf{F}(x, y, z)=\left(a y^{3}-z^{2}\right) \mathbf{i}+\left(b z+x y^{2}\right) \mathbf{j}+(c x z+3 y) \mathbf{k}$, where a, b, and c are constants. Compute the curl of \mathbf{F} and find values of a, b, and c, if any, for which \mathbf{F} is conservative. b) (5 marks) Is there a vector field \mathbf{G} on R^{3} such that $\operatorname{curl} \mathbf{G}=x^{3} \mathbf{i}+\left(z-2 x^{2} y\right) \mathbf{j}+\left(2+z-x^{2} z\right) \mathbf{k}$? Justify your answer.
