PROBLEMS (due Apr 5)

1. A common model for interest rates is the Vasicek model, $d r(t)=(\theta-$ $\alpha r(t)) d t+\sigma d B(t)$.
Relate it to the Ornstein-Uhlenbeck process.
The discount function is

$$
Z_{t, T}(\omega)=E\left[e^{-\int_{t}^{T} r(s) d s} \mid \mathcal{F}(t)\right]
$$

i. Show that in fact $Z_{t, T}$ is only a function of $r(t)$ (which we may as well call $Z_{t, T}(r(t))$.) ii. Fix t and show that $Z_{t, T}(r)$ is the solution of the equation

$$
\frac{\partial Z}{\partial T}=(\theta-\alpha r) \frac{\partial Z}{\partial r}+\sigma^{2} \frac{\partial^{2} Z}{\partial r^{2}}-r Z
$$

with $Z_{t, t}=1$. iii. Show that the continuously compounded interest rate $R_{t, T}=-(T-t)^{-1} \ln Z_{t, T}$ is of the special form $R(t, T)=a(T-t)+b(T-$ $t) r(t)$ and find the functions $a(t)$ and $b(t)$. iv. Repeat i.-iii. for the CIR model $d r(t)=(\alpha-\beta r(t)) d t+\sigma \sqrt{r(t)} d B(t)$
2. Compute the mean $E[r(t)]$ and the variance $\operatorname{Var}(r(t))$ for the Vasicek and CIR models.
3. Let $X_{1}(\cdot)$ and $X_{2}(\cdot)$ solve the two constant coefficient sde's $d X_{1}(t)=$ $b d t+\sigma_{1} d B(t)$ and $d X_{2}(t)=b d t+\sigma_{2} d B(t)$. How big is

$$
\frac{P\left(X_{1}\left(t_{1}\right) \in d x_{1}, \ldots, X_{1}\left(t_{n}\right) \in d x_{n}\right)}{P\left(X_{2}\left(t_{1}\right) \in d x_{1}, \ldots, X_{2}\left(t_{n}\right) \in d x_{n}\right)}
$$

as n becomes large?
4. If P and \tilde{P} are equivalent and $\frac{d \tilde{P}}{d P}=Z$ show that $\frac{d P}{d \tilde{P}}=\frac{1}{Z}$.

Let $P_{x}^{a, b}$ denote the probability measure on $C([0, T])$ corresponding to the solution of the stochastic differential equation

$$
d X(t)=\sigma(t, X(t)) d B(t)+b(t, X(t)) d t, \quad X(0)=x
$$

where $a=\sigma \sigma^{T}$. Let $b_{1} \neq b_{2}$. Write expressions for $\frac{d P_{x}^{a, b_{1}}}{d P_{x}^{a, b_{2}}}$ and $\frac{d P_{x}^{a, b_{2}}}{d P_{x}^{a, b_{1}}}$ using the Cameron-Martin- Girsanov formula.
Is the second the inverse of the first, or not? Find an explanation.
5. Let $\alpha(x)=\left(\alpha_{1}(x), \ldots, \alpha_{n}(x)\right)$ be a smooth function from R^{n} to R^{n}. Consider the partial differential equation for $x \in R^{n}$, and $t>0$,

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\sum_{i=1}^{n} \alpha_{i}(x) \frac{\partial u}{\partial x_{i}}, \quad u(0, x)=f(x)
$$

i. Use the Girsanov theorem to show that the solution is

$$
u(t, x)=E_{x}\left[e^{\int_{0}^{t} \alpha(B(s)) d B(s) ? \frac{1}{2} \int_{0}^{t}|\alpha(B(s))|^{2} d s} f(B(t))\right] .
$$

ii. Suppose that $\alpha(x)=\nabla \gamma(x)$ for some function $\gamma: R^{n} \rightarrow R$. Use Ito's formula to show that in this case

$$
u(t, x)=e^{-\gamma(x)} E_{x}\left[e^{\gamma(B(t)) ? \frac{1}{2} \int_{0}^{t}\left(\nabla \gamma^{2}(B(s))+\Delta \gamma(B(s))\right) d s} f(B(t))\right]
$$

iii. Use the Feynman-Kac formula to show that $v(t, x)=e^{\gamma(x)} u(t, x)$ is the solution of

$$
\frac{\partial v}{\partial t}=\frac{1}{2} \Delta v-\frac{1}{2}\left(\nabla \gamma^{2}+\Delta \gamma\right) v
$$

