PROBLEMS (due Mar 15)

1. The nth Hermite polynomial is $H_{n}(t, x)=\frac{(-t)^{n}}{n!} e^{\frac{x^{2}}{2 t}} \frac{d^{n}}{d x^{n}} e^{-\frac{x^{2}}{2 t}}$. Show that the H_{n} play the role that the monomials $\frac{x^{n}}{n}$ play in ordinary calculus,

$$
d H_{n+1}\left(t, B_{t}\right)=H_{n}\left(t, B_{t}\right) .
$$

2. The backward equation for the Ornstein-Uhlenbeck process is

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}-\rho x \frac{\partial u}{\partial x}
$$

Show that

$$
v(t, x)=u\left(t, x e^{\rho t}\right)
$$

satisfies

$$
e^{2 \rho t} \frac{\partial v}{\partial t}=\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}
$$

and transform this to the heat equation by $\tau=\frac{1-e^{-2 \rho t}}{2 \rho}$. Use this to derive Mehler's formula for the transition probabilities,

$$
p(t, x, d y)=\frac{e^{-\frac{\rho\left(y-x e^{-\rho t}\right)^{2}}{\left(1-e^{-2 \rho t}\right)}}}{\sqrt{2 \pi\left(\frac{\left(1-e^{-2 \rho t}\right)}{2 \rho}\right)}} d y
$$

3. i. Show that $X(t)=(1-t) \int_{0}^{t} \frac{1}{1-s} d B(s)$ is the solution of

$$
d X(t)=-\frac{X(t)}{1-t} d t+d B(t), \quad 0 \leq t<1, \quad X(0)=0
$$

ii. Show that $X(t)$ is Gaussian and find the mean and covariance.
iii. Show that for $0=t_{0}<t_{1}<\cdots<t_{n}<1$ the variables $\frac{X\left(t_{i}\right)}{1-t_{i}}-\frac{X\left(t_{i-1}\right)}{1-t_{i-1}}$ are independent
iv. Show that the finite dimensional distributions are given by

$$
\begin{aligned}
& P\left(X\left(t_{1}\right) \in d x_{1}, \ldots, X\left(t_{n}\right) \in d x_{n}\right) \\
& =\prod_{i=1}^{n} p\left(t_{i}-t_{i-1}, x_{i}-x_{i-1}\right) \frac{p\left(1-t_{n},-x_{n}\right)}{p(1,0)} d x_{1} \cdots d x_{n}
\end{aligned}
$$

where $p(t, x)$ is the Gaussian kernel.
v. Show that $X(t)$ is equal in distribution to a Brownian motion conditioned to have $B(1)=0$. It is the Brownian Bridge.
vi. For fixed constants a and b solve the stochastic differential equation

$$
d X(t)=\frac{b-X(t)}{1-t} d t+d B(t), \quad 0 \leq t<1 \quad X(0)=a
$$

This is the Brownian Bridge from a to b.
4. Consider the general linear stochastic differential equation

$$
d X_{t}=\left[A(t) X_{t}+a(t)\right] d t+\sigma(t) d B_{t}, \quad X_{0}=x
$$

where B_{t} is an r-dimensional Brownian motion independent of the initial vector $x \in \mathbf{R}^{\mathbf{d}}$ and the $d \times d, d \times 1$ and $d \times r$ matrices $A(t), a(t)$ and $\sigma(t)$ are non-random. Show that the solution is given by

$$
X_{t}=\Phi(t)\left[x+\int_{0}^{t} \Phi^{-1}(s) a(s) d s+\int_{0}^{t} \Phi^{-1}(s) \sigma(s) d B_{s}\right]
$$

where Φ is the $d \times d$ matrix solution of $\dot{\Phi}(t)=A(t) \Phi(t), \quad \Phi(0)=I$.

