PROBLEMS (due Feb 8)

1. Let $B(t)$ be Brownian motion. Prove that $X=\int_{0}^{1} B^{2}(s) d s$ is a random variable and compute the first two moments. Is X Gaussian?
2. Let $B(t)$ be Brownian motion. Prove that with probability one,

$$
\lim _{n \rightarrow \infty} \sum_{i<2^{n} t}\left|B_{(i+1) 2^{-n}}-B_{i 2^{-n}}\right|^{2}=t
$$

(Hint: Compute the variance and use Borel-Cantelli)
3. Let $p \in(-1 / 2,1 / 2)$. For each fixed y prove that $f_{y}(x)=|x-y|^{-p}-|x|^{-p}$ is in $L^{2}(\mathbf{R})$.
Let $X(f)=\int f d B$ be the Gaussian measure corresponding to Brownian motion, ie. the Gaussian measure corresponding to Lebesgue measure on R. Let

$$
Z_{y}=X\left(f_{y}\right)
$$

Z_{y} is called fractional Brownian motion of index α. Find the distribution (ie. all finite dimensional distributions) of Z_{y}.
4. Let τ be a stopping time. Show that

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq n\} \in \mathcal{F}_{n}, n \geq 0\right\}
$$

is a σ-field.
5. If τ and σ are stopping times, then so are $\tau+\sigma, \max (\tau, \sigma)$ and $\min (\tau, \sigma)$.
6. Let $B_{t}, t \geq 0$ be Brownian motion. Use the law of the iterated logarithm,

$$
\limsup _{t \rightarrow 0} \frac{B_{t}}{\sqrt{2 t \log \log t^{-1}}}=1 \quad \text { a.s. }
$$

to find all subsequential limit points of

$$
\frac{B_{t}}{\sqrt{t \log \log t}}
$$

as $t \rightarrow \infty$.
7. Let X_{1}, X_{2}, \ldots be iid with $E\left[X_{i}\right]=0$ and $E\left[X_{i}^{2}\right]=1$ and $S_{n}=X_{1}+\cdots+$ X_{n}. The law of the iterated logarithm also holds in this case

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1 \quad \text { a.s. }
$$

(if you are interested, it can be derived from the LIL for Brownian motion by embedding the S_{n} into the Brownian motion, see eg. Durrett)
On the other hand the central limit theorem says that $\frac{S_{n}}{\sqrt{n}}$ converges in distribution to a Gaussian.
Explain why the two results are not in contradiction.

