PROBLEMS (due Feb 8)

- 1. Let B(t) be Brownian motion. Prove that $X = \int_0^1 B^2(s) ds$ is a random variable and compute the first two moments. Is X Gaussian?
- 2. Let B(t) be Brownian motion. Prove that with probability one,

$$\lim_{n \to \infty} \sum_{i < 2^n t} |B_{(i+1)2^{-n}} - B_{i2^{-n}}|^2 = t$$

(Hint: Compute the variance and use Borel-Cantelli)

3. Let $p \in (-1/2, 1/2)$. For each fixed y prove that $f_y(x) = |x - y|^{-p} - |x|^{-p}$ is in $L^2(\mathbf{R})$.

Let $X(f) = \int f dB$ be the Gaussian measure corresponding to Brownian motion, i.e. the Gaussian measure corresponding to Lebesgue measure on **R**. Let

$$Z_y = X(f_y)$$

 Z_y is called *fractional Brownian motion* of index α . Find the distribution (ie. all finite dimensional distributions) of Z_y .

4. Let τ be a stopping time. Show that

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \le n \} \in \mathcal{F}_n, \ n \ge 0 \}$$

is a σ -field.

- 5. If τ and σ are stopping times, then so are $\tau + \sigma$, max (τ, σ) and min (τ, σ) .
- 6. Let $B_t, t \ge 0$ be Brownian motion. Use the law of the iterated logarithm,

$$\limsup_{t \to 0} \frac{B_t}{\sqrt{2t \log \log t^{-1}}} = 1 \qquad a.s.$$

to find all subsequential limit points of

$$\frac{B_t}{\sqrt{t\log\log t}}$$

as $t \to \infty$.

7. Let X_1, X_2, \ldots be iid with $E[X_i] = 0$ and $E[X_i^2] = 1$ and $S_n = X_1 + \cdots + X_n$. The law of the iterated logarithm also holds in this case

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1 \qquad a.s$$

(if you are interested, it can be derived from the LIL for Brownian motion by embedding the S_n into the Brownian motion, see eg. Durrett)

On the other hand the central limit theorem says that $\frac{S_n}{\sqrt{n}}$ converges in distribution to a Gaussian.

Explain why the two results are not in contradiction.