PRACTICE PROBLEMS

1. Solve the stochastic differential equation $d X=X d B, X(0)=1$. Does the solution ever become negative?
2. Consider the Ehrenfests model: An urn contains n balls. m of the balls are white, and the rest are black. At each time step a ball is chosen at random from the urn and replaced with one of the opposite colour. Let X n k be the number of white balls minus the number of black balls after k steps.
(a) Write down the transition probabilities for the Markov chain.
(b) Show that $Y_{n}(t)=n^{-1 / 2} X_{\lfloor n\rfloor}^{n}$ converges to the Ornstein-Uhlenbeck process.
3. Let V be the value of a European option where the interest rate is r and the underlying stock price process satisfies $d S=\mu S d t+\sigma S d B$. Let $\Gamma=\frac{\partial^{2} V}{\partial S^{2}}$ and vega $v=\frac{\partial V}{\partial \sigma}$
(a) Write a partial differential equation for vega as a function of S and t, in terms of σ, r and Γ
(b) Find the correct boundary condition at the expiry date.
4. Find the forward and backward equations for the Bessel process $r(t)=$ $\sqrt{\left|B_{1}(t)\right|^{2}+\left|B_{2}(t)\right|^{2}}$ where $B_{1}(t)$ and $B_{2}(t)$ are independent Brownian motions. Include the boundary conditions.
5. Let M_{t} be a martingale under P with respect to \mathcal{F}_{\sqcup} and a_{t} a continuous progressively measurable function of finite variation. Suppose both M_{t} and a_{t} are bounded on $[0, T]$. Show that

$$
a_{t} M_{t}-\int_{0}^{t} M_{s} d a_{s}
$$

is a martingale.
6. Let $f_{t}(x) d x=P\left(B_{t} \in d x\left|\sup _{0 \leq s \leq t}\right| B_{s} \mid<1\right)$ be the density of Brownian motion conditioned to stay in $(-\overline{1}, \overline{1})$ up to time t. Compute $\lim _{t \rightarrow \infty} f_{t}(x)$.
7. Find the infinitesimal generator of the process $d x_{1}=d t, d x_{2}=d B$ which produces the graph of Brownian motion.
8. Suppose that B_{t} is a Brownian motion on the unit circle. Find a pde (with boundary conditions) for $E_{x}\left[\arg \left(B_{t}\right)\right]$.
9. Let $G(x, y)$ be the Green function for $L=\frac{1}{2} \Delta+V$ on a nice bounded connected set $\Omega \subset \mathbf{R}^{\mathbf{d}}$, ie. $L h=f$ has solution $h(x)=\int G(x, y) f(y) d y$. Find a representation for $G(x, y)$ using Brownian motion.
10. Find the quadratic variation of the Feller diffusion $d X=\sqrt{X} d B$.
11. Let $X_{t}=B_{t}^{2}$ where B_{t} is a Brownian motion. Is X_{t} Markov?

