
Strong Markov property of Brownian motion
Bt , t ≥ 0 be a Brownian motion with respect to Ft , t ≥ 0
τ a bounded stopping time.
B̃t = Bt+τ − Bτ .
Then B̃t is a Brownian motion independent of Fτ .

In other words, Brownian motion starts afresh at every stopping time.

Proof.
optional stopping + martingale characterization of Brownian
motion
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Reflection Principle
For all x > 0, t ≥ 0,

P( sup
0≤s≤t

Bs ≥ x) = 2P(Bt ≥ x)

In particular sup0≤s≤t Bs
d
= |Bt |

Proof.
τx = inf{t ≥ 0 : Bt ≥ x}

P( sup
0≤s≤t

Bs ≥ x) = P(Bt ≥ x) + P( sup
0≤s≤t

Bs ≥ x , Bt < x) = P(τx ≤ t)

P( sup
0≤s≤t

Bs ≥ x , Bt < x) = P(τx ≤ t , Bτx+(t−τx ) − Bτx < 0) =
1
2

P(τx ≤ t)
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P(τx ≤ t) = 2
∫ ∞

x

1√
2πt

e−
y2

2t dy

Differentiate in t to see that τx has density

fx(t) =
1√
2π

(
− 1

t3/2

∫ ∞

x
e−

y2

2t dy +
1

t5/2

∫ ∞

x
y2e−

y2

2t dy
)

=
x√
2πt3

e−
x2
2t

In particular E [τx ] = ∞

τx = inf{t ≥ 0 : x−1Bt = 1} = inf{x2t : B̃t = x−1Bx2t = 1} = x2τ̃1

Note τx has stationary, independent increments, i.e. it is a Lévy
process
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Law of the iterated logarithm (Khinchine)
Bt , t ≥ 0 Brownian motion

lim sup
t→0

Bt√
2t log log t−1

= 1 a.s.

Proof

To simplify expressions let h(t) =
√

2t log log t−1

Step 1. Is to show lim supt→0
Bt

h(t) ≤ 1 a.s.
Applying Doob’s inequality to the martingale exp{aXt − a2t/2}

P( sup
0≤s≤t

{Bs − as/2} ≥ λ) ≤ e−aλ

Let ε > 0 0 < θ < 1 tn = θn an = (1 + ε)θ−nh(θn) λn = h(θn)/2
Borel-Cantelli: P(sup0≤s≤tn Bs ≥ antn/2 + λn i .o.) = 0
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Proof of LIL
Step 2. Is to show lim supt→0

Bt
h(t) ≥ 1 a.s.

Let ε > 0 θ = ε2/16

An = {Bθn − Bθn+1 ≥ (1−
√

θ)h(θn)} An independent

If
∑

P(An) = ∞ by Borel-Cantelli lemma P(An i .o.) = 1
i.e. with probability one there are infinitely many n for which

Bθn ≥ (1−
√

θ)h(θn) + Bθn+1

Step 1 ⇒ ∀n ≥ N, Bθn+1 < 2h(θn+1)
symmetry⇒ Bθn+1 > −2h(θn+1)

so Bθn ≥ (1−
√

θ)h(θn)− 2h(θn+1) ≥ (1− ε)h(θn)

so lim supt→0 Bt/h(t) ≥ (1− ε)

Hence it suffices to prove that
∑

P(An) = ∞
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Proof of LIL

P(Bθn − Bθn+1 ≥ (1−
√

θ)h(θn)) =

∫ ∞

(1−
√

θ)h(θn)√
θn−θn+1

e−
x2
2

√
2π

dx

≥ C(log n)−1/2n−
(1−

√
θ)2

1−θ

by ∫ ∞

a

e−
x2
2

√
2π

dx ≥ 1
a + a−1

e−
a2
2

√
2π

Since (1−
√

θ)2 = 1− 2
√

θ + θ < 1− θ, the series diverges QED
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Prop
|{t : Bt = 0}| = 0 and {t : Bt = 0} is perfect

Proof.
Recall perfect = closed and any point is a limit point
closed is obvious

E [

∫ 1

0
1{t :Bt=0}(s)ds] =

∫ 1

0
P(0, 0, s, {0})ds = 0 ⇒ |{t : Bt = 0}| = 0

LIL ⇒ 0 is a limit point of {t : Bt = 0}
Bs = 0 ⇒ Bt+s − Bs Brownian motion so s is a limit point of
{t : Bt+s − Bs = 0}

so {t : Bt = 0} is like a Cantor set. {t : Bt = 0} = ∪∞n=1In, In disjoint
intervals
Bt , t ∈ In is called a Brownian excursion
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If ft is a continuous function on [0,∞) and τx = inf{t : ft ≥ x} then τx is
continuous on [a, b] iff sup0≤s≤t ft is strictly increasing on [τa, τb]

Prop
{τx}x≥0 is not continuous in any interval

Proof.
LIL ⇒

P(τx continuous on [a, b]) = 0

Hence
P(

⋃
a<b∈Q

{τx continuous on [a, b]}) = 0

So {τx}x≥0 is a non-decreasing, discontinuous Lévy process
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Another way to compute the distribution of τx , x ≥ 0

Mt = eλBt− 1
2 λ2t is a martingale

Optional stopping ⇒ E [eλBmin(τx ,B)− 1
2 λ2 min(τx ,B)] = 1

BCT ⇒ E [eλBτx− 1
2 λ2τx ] = 1, λ ≥ 0

so E [e−λτx ] = e−
√

2λx , λ ≥ 0

In particular if τx and τ̃y are independent then τx + τ̃y
dist
= τx+y

Stable laws
X has stable distribution if for each n there is 0 < α ≤ 2 and µn such
that if X1, X2, . . . are iid with Xi

dist
= X then

X1 + · · ·+ Xn − µn

n1/α

dist
= X

Examples: Gaussian α = 2; Cauchy α = 1; τ1 α = 1/2
Subordinator means Xt non-decreasing (so it can be used as a time).
τx , x ≥ 0 is a stable subordinator eg. Bτx = x
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τ = inf{t ≥ 0 : Bt hits b + mt}, b, m > 0. What is P(τ < ∞)?

E [eλBmin(τ,N)− 1
2 λ2 min(τ,N)] = 1

Bmin(τ,N) ≤ b + m min(τ, N) so if λm ≤ 1
2λ2 we can let N →∞ to get

E [eλ(b+mτ)− 1
2 λ2τ1τ<∞] + lim

N→∞
E [eλBmin(τ,N)− 1

2 λ2 min(τ,N)1τ=∞] = 1

lim
N→∞

E [eλBmin(τ,N)− 1
2 λ2 min(τ,N)1τ=∞]

≤ lim
N→∞

E [eλ(b+m min(τ,N))− 1
2 λ2 min(τ,N)1τ=∞]

= 0

so
E [e(λm− 1

2 λ2)τ1τ<∞] = e−λb

Let λ ↓ 2m to get
P(τ < ∞) = e−2mb
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Brownian motion starting at x : Bt + x , B0 = 0

Px(A) = P(A | B0 = x)

a < x < b What is Px(τa < τb)?

If B0 = x then Bt is still a martingale

Ex [Bmin(τa,τb,N)] = x

N →∞, BCT⇒ Ex [Bmin(τa,τb)] = x = Ex [Bτa1τa<τb ] + Ex [Bτb1τa>τb ]
= aPx(τa < τb) + bPx(τa > τb)

f (x) = Px(τa < τb) af (x) + b(1− f (x)) = x

f (x) = Px(τa < τb) = b−x
b−a
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Brownian motion in Rd

1 Bt = (B1
t , . . . , Bd

t ), Bi
t independent Brownian motions

2 Bt Markov with P(Bt ∈ A | Bs = x) =
∫

A
1

(2π(t−s))d/2 e−
|y−x|2
2(t−s) dy

3 Bt has stationary independent mean zero increments with
E [|Bt − Bs|2] = d(t − s)

4 eλ·Bt− 1
2 |λ|

2t is a martingale for any λ

Note that 1 does not depend on the basis: If B1
t , . . . , B2

t independent
and O is orthogonal, then the coordinates of OBt are independent
Brownian motions in fact

Theorem
Suppose X1, X2 independent and ∃θ 6= Nπ/2 such that

X1 cos θ + X2 sin θ, −X1 sin θ + X2 cos θ independent

Then X1, X2 are Gaussians (Maxwell)
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Dirichlet problem

Given a bounded open subset G ⊂ Rd and a continuous function
f : ∂G → R find a continuous function u : Ḡ → R such that{

∆u = 0 in G
u|∂G = f

∆u def
=

d∑
i=1

∂2u
∂x2

i
= 2d lim

r→0
r−2

(
1

|∂S(r , x)|

∫
∂S(r ,x)

udS − u(x)

)

Lemma
u harmonic in G ⇔ u satisfies the mean value property: for all
sufficiently small r > 0,

1
|∂S(r , x)|

∫
∂S(r ,x)

udS = u(x)
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Lemma
u harmonic in G ⇔ u satisfies the mean value property: for all
sufficiently small r > 0,

1
|∂S(r , x)|

∫
∂S(r ,x)

udS = u(x)

Proof.
Green’s identity

∫
G v∆udx =

∫
G u∆vdx +

∫
∂G v ∂u

∂n − u ∂v
∂n dS

G = {δ < x < r}, v =

{ log r−log |x |
log r−log δ d = 2
|x |2−d−r2−d

δ2−d−r2−d d > 2
let ρ ↓ 0
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Bt d-dimensional Brownian motion starting at x ∈ G

τG = inf{t ≥ 0 : B(t) 6∈ G}

u(x) = Ex [f (B(τG))]

”Theorem” If ∂G ”nice” then u solves the Dirichlet problem

Ex [f (B(τG))] =

∫
∂G

f (y)πG(x , dy), πG(x , Γ) = Px(B(τG) ∈ Γ), Γ ⊂ ∂G

Example. G = B(x , r), πG(x , Γ) = |Γ|
|∂S(x ,r)| , Γ ⊂ S(x , r)

Brownian motion is invariant under rotations
∴ πG(x , ·) is invariant under rotations
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Proposition

G bounded open ⊂ Rd , f bounded measurable on ∂G. Then
u(x) = Ex [f (B(τG))] is harmonic in G.

Proof.
B = B(x , r) ⊂ G τB ≤ τG

Strong Markov property: u(B(τS)) = Ex [f (B(τG)) | FτS ]

u(x) = Ex [f (B(τG))] = Ex [Ex [f (B(τG)) | FτS ]]

= Ex [u(B(τS))]

=

∫
∂S

u(y)πS(x , dy)

=
1
|∂S|

∫
∂S

u(y)dS

So u satisfies the mean value property in G.
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a ∈ ∂G

To complete the proof that u solves the Dirichlet problem we need

lim
x→a, x∈G

Ex [f (B(τG))] = f (a) It is not always true!

Proposition
If lim x→a

x∈G
Px [τG > ε] = 0, ∀ε > 0 then for any bdd mble function

f : ∂G → R which is continuous at a, lim x→a
x∈G

Ex [f (B(τG))] = f (a)

Proof.
Need: limx→a, x∈G Px (|B(τG)− x | < δ) = 1

Px(|B(τG)− x | < δ) ≥ Px( sup
0≤t≤ε

|B(t)− x | < δ, τG ≤ ε)

≥ Px( sup
0≤t≤ε

|B(t)− x | < δ)− Px(τG ≤ ε)

→ 1 as x → a, x ∈ G then ε ↓ 0
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Proposition
a ∈ ∂G is regular if Pa(σG = 0) = 1 σG = inf{t > 0 : B(t) 6∈ G}
a regular ⇔ limx→a, x∈G Ex [f (BτG)] = f (a) ∀f bdd mble, cont at a

Proof of ⇒
Enough to prove Px(σG < ε) lower semi-continuous in x
Then lim sup x→a

x∈G
Px(σG < ε) ≥ Pa(σG < ε) = 1 and σG ≥ τG

But
∫

p(0, x , δ, y)Py (∃s ∈ (0, ε− δ), B(s) 6∈ G) continuous
and ↑ Px(σG < ε) as δ ↓ 0

Examples
1 If ∂G is a smooth manifold near a then a is regular by LIL
2 If ∃ cone C of height h > 0 and vertex at a such that

C − {a} ⊂ ḠC then a is a regular (exterior cone condition)
3 d ≤ 2 always,d ≥ 3 ∃counterexamples
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Application to recurrence/transience of Brownian
motion

G = {y ∈ Rd : δ < |y | < R} f =

{
0 |y | = R
1 |y | = δ

u(x) = Ex [f (B(τG))] = Px(τδ < τR) =

{ log R−log |x |
log R−log δ d = 2
|x |2−d−R2−d

δ2−d−R2−d d > 2

Theorem In d ≥ 2, Brownian motion does not visit a point

Proof.

Px(τ0 < τR) = lim
δ↓0

Px(τδ < τR) = lim
δ↓0

log R − log |x |
log R − log δ

= 0
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Theorem In d = 2, Brownian motion is recurrent, ie. comes
arbitrarily close to any point arbitrarily many times

Proof.

Px(τδ < ∞) = lim
R↑∞

Px(τδ < τR) = lim
R↑∞

log R − log |x |
log R − log δ

= 1

Theorem In d ≥ 3, Brownian motion wanders off to infinity

Proof.

Px(τδ < ∞) = limR↑∞
|x |2−d−R2−d

δ2−d−R2−d =
(
|x |
δ

)2−d
if |x | > δ,0 otherwise

Px(hit |y | = δ after time t) =
∫ e−

|x−y|2
2t

(2πt)d/2 Py (τδ < ∞)dy → 0 as t →∞
Px(lim inft→∞ |B(t)| > δ) = 1
δ ↑ ∞lim inft→∞ |B(t)| = ∞ a.s.
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