Strong Markov property of Brownian motion

 $B_t, t \ge 0$ be a Brownian motion with respect to $\mathcal{F}_t, t \ge 0$ τ a bounded stopping time. $\tilde{B}_t = B_{t+\tau} - B_{\tau}$. Then \tilde{B}_t is a Brownian motion independent of \mathcal{F}_{τ} .

In other words, Brownian motion starts afresh at every stopping time.

Proof.

optional stopping $+\mbox{ martingale characterization of Brownian}$ motion

Reflection Principle

For all x > 0, $t \ge 0$,

$$P(\sup_{0\leq s\leq t}B_s\geq x)=2P(B_t\geq x)$$

In particular $\sup_{0 \le s \le t} B_s \stackrel{d}{=} |B_t|$

Proof.

$$\tau_{\mathbf{x}} = \inf\{t \ge \mathbf{0} : B_t \ge \mathbf{x}\}$$

$$P(\sup_{0 \le s \le t} B_s \ge x) = P(B_t \ge x) + P(\sup_{0 \le s \le t} B_s \ge x, B_t < x) = P(\tau_x \le t)$$

 $P(\sup_{0 \le s \le t} B_s \ge x, B_t < x) = P(\tau_x \le t, B_{\tau_x + (t - \tau_x)} - B_{\tau_x} < 0) = \frac{1}{2}P(\tau_x \le t)$

$$\mathcal{P}(au_x \leq t) = 2\int_x^\infty rac{1}{\sqrt{2\pi t}} e^{-rac{y^2}{2t}} dy$$

Differentiate in t to see that τ_x has density

$$f_{x}(t) = \frac{1}{\sqrt{2\pi}} \left(-\frac{1}{t^{3/2}} \int_{x}^{\infty} e^{-\frac{y^{2}}{2t}} dy + \frac{1}{t^{5/2}} \int_{x}^{\infty} y^{2} e^{-\frac{y^{2}}{2t}} dy \right)$$

= $\frac{x}{\sqrt{2\pi t^{3}}} e^{-\frac{x^{2}}{2t}}$

In particular $E[\tau_x] = \infty$

$$\tau_x = \inf\{t \ge 0 : x^{-1}B_t = 1\} = \inf\{x^2t : \tilde{B}_t = x^{-1}B_{x^2t} = 1\} = x^2\tilde{\tau}_1$$

Note τ_x has stationary, independent increments, i.e. it is a Lévy process

Law of the iterated logarithm (Khinchine)

B_t , $t \ge 0$ Brownian motion

$$\limsup_{t\to 0} \frac{B_t}{\sqrt{2t\log\log t^{-1}}} = 1 \qquad a.s.$$

Proof

To simplify expressions let $h(t) = \sqrt{2t \log \log t^{-1}}$ Step 1. Is to show $\limsup_{t\to 0} \frac{B_t}{h(t)} \le 1$ a.s. Applying Doob's inequality to the martingale $\exp\{aX_t - a^2t/2\}$

$$P(\sup_{0\leq s\leq t} \{B_s - as/2\} \geq \lambda) \leq e^{-a\lambda}$$

Let $\epsilon > 0$ $0 < \theta < 1$ $t_n = \theta^n a_n = (1 + \epsilon)\theta^{-n}h(\theta^n)$ $\lambda_n = h(\theta^n)/2$ Borel-Cantelli: $P(\sup_{0 \le s \le t_n} B_s \ge a_n t_n/2 + \lambda_n i.o.) = 0$

Proof of LIL

Step 2. Is to show $\limsup_{t\to 0} \frac{B_t}{h(t)} \ge 1$ a.s. Let $\epsilon > 0$ $\theta = \epsilon^2/16$

 $A_n = \{B_{\theta^n} - B_{\theta^{n+1}} \ge (1 - \sqrt{\theta})h(\theta^n)\}$ A_n independent

If $\sum P(A_n) = \infty$ by Borel-Cantelli lemma $P(A_n i.o.) = 1$ i.e. with probability one there are infinitely many *n* for which

$$B_{ heta^n} \geq (1 - \sqrt{ heta})h(heta^n) + B_{ heta^{n+1}}$$

Step 1 $\Rightarrow \forall n \geq N$, $B_{\theta^{n+1}} < 2h(\theta^{n+1}) \stackrel{symmetry}{\Rightarrow} B_{\theta^{n+1}} > -2h(\theta^{n+1})$ so $B_{\theta^n} \geq (1 - \sqrt{\theta})h(\theta^n) - 2h(\theta^{n+1}) \geq (1 - \epsilon)h(\theta^n)$ so lim sup_{t→0} $B_t/h(t) \geq (1 - \epsilon)$ Hence it suffices to prove that $\sum P(A_n) = \infty$

Proof of LIL

$$P(B_{\theta^n} - B_{\theta^{n+1}} \ge (1 - \sqrt{\theta})h(\theta^n)) = \int_{\frac{(1 - \sqrt{\theta})h(\theta^n)}{\sqrt{\theta^n - \theta^{n+1}}}}^{\infty} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$$
$$\ge C(\log n)^{-1/2} n^{-\frac{(1 - \sqrt{\theta})^2}{1 - \theta}}$$

by

$$\int_{a}^{\infty} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \geq \frac{1}{a+a^{-1}} \frac{e^{-\frac{a^2}{2}}}{\sqrt{2\pi}}$$

Since $(1 - \sqrt{\theta})^2 = 1 - 2\sqrt{\theta} + \theta < 1 - \theta$, the series diverges

QED

2

Prop

$$|\{t : B_t = 0\}| = 0 \text{ and } \{t : B_t = 0\} \text{ is perfect}$$

Proof.

Recall *perfect* = *closed* and *any point is a limit point closed* is obvious

$$E[\int_{0}^{1} 1_{\{t:B_{t}=0\}}(s)ds] = \int_{0}^{1} P(0,0,s,\{0\})ds = 0 \quad \Rightarrow |\{t:B_{t}=0\}| = 0$$

LIL $\Rightarrow 0$ is a limit point of $\{t:B_{t}=0\}$
 $B_{s}=0 \Rightarrow B_{t+s} - B_{s}$ Brownian motion so *s* is a limit point of
 $\{t:B_{t+s} - B_{s} = 0\}$

so $\{t : B_t = 0\}$ is like a Cantor set. $\{t : B_t = 0\} = \bigcup_{n=1}^{\infty} I_n$, I_n disjoint intervals

 B_t , $t \in I_n$ is called a Brownian excursion

If f_t is a continuous function on $[0, \infty)$ and $\tau_x = \inf\{t : f_t \ge x\}$ then τ_x is continuous on [a, b] iff $\sup_{0 \le s \le t} f_t$ is strictly increasing on $[\tau_a, \tau_b]$

Prop

 $\{\tau_x\}_{x\geq 0}$ is not continuous in any interval

Proof.

 $\mathsf{LIL} \Rightarrow$

$$P(\tau_x \text{ continuous on } [a, b]) = 0$$

Hence

$$\mathsf{P}(\bigcup_{a < b \in \mathbb{Q}} \{\tau_x \text{ continuous on } [a, b]\}) = 0$$

So $\{\tau_x\}_{x\geq 0}$ is a non-decreasing, discontinuous Lévy process

Another way to compute the distribution of τ_x , $x \ge 0$ $M_t = e^{\lambda B_t - \frac{1}{2}\lambda^2 t}$ is a martingale Optional stopping $\Rightarrow E[e^{\lambda B_{\min(\tau_x,B)} - \frac{1}{2}\lambda^2 \min(\tau_x,B)}] = 1$ BCT $\Rightarrow E[e^{\lambda B_{\tau_x} - \frac{1}{2}\lambda^2 \tau_x}] = 1, \quad \lambda \ge 0$ so $E[e^{-\lambda \tau_x}] = e^{-\sqrt{2\lambda}x}, \quad \lambda \ge 0$

In particular if τ_x and $\tilde{\tau}_y$ are independent then $\tau_x + \tilde{\tau}_y \stackrel{\text{dist}}{=} \tau_{x+y}$

Stable laws

X has stable distribution if for each *n* there is $0 < \alpha \le 2$ and μ_n such that if X_1, X_2, \ldots are iid with $X_i \stackrel{dist}{=} X$ then

$$\frac{X_1 + \dots + X_n - \mu_n}{n^{1/\alpha}} \stackrel{\text{dist}}{=} X$$

Examples: Gaussian $\alpha = 2$; Cauchy $\alpha = 1$; $\tau_1 \quad \alpha = 1/2$ Subordinator means X_t non-decreasing (so it can be used as a time). τ_x , $x \ge 0$ is a stable subordinator eg. $B_{\tau_x} = x$ $\tau = \inf\{t \ge 0 : B_t \text{ hits } b + mt\}, b, m > 0.$ What is $P(\tau < \infty)$?

$$E[e^{\lambda B_{\min(\tau,N)}-\frac{1}{2}\lambda^2\min(\tau,N)}]=1$$

 $B_{\min(\tau,N)} \leq b + m\min(\tau,N)$ so if $\lambda m \leq \frac{1}{2}\lambda^2$ we can let $N \to \infty$ to get

$$E[e^{\lambda(b+m\tau)-\frac{1}{2}\lambda^{2}\tau}\mathbf{1}_{\tau<\infty}]+\lim_{N\to\infty}E[e^{\lambda B_{\min(\tau,N)}-\frac{1}{2}\lambda^{2}\min(\tau,N)}\mathbf{1}_{\tau=\infty}]=1$$

$$\lim_{N \to \infty} E[e^{\lambda B_{\min(\tau,N)} - \frac{1}{2}\lambda^2 \min(\tau,N)} \mathbf{1}_{\tau=\infty}]$$

$$\leq \lim_{N \to \infty} E[e^{\lambda(b + m \min(\tau,N)) - \frac{1}{2}\lambda^2 \min(\tau,N)} \mathbf{1}_{\tau=\infty}]$$

$$= 0$$

SO

$$E[e^{(\lambda m - \frac{1}{2}\lambda^2)\tau} \mathbf{1}_{\tau < \infty}] = e^{-\lambda b}$$

Let $\lambda \downarrow 2m$ to get

$$P(au < \infty) = e^{-2mk}$$

Brownian motion starting at *x*: $B_t + x$, $B_0 = 0$

$$P_x(A) = P(A \mid B_0 = x)$$

a < x < b What is $P_x(\tau_a < \tau_b)$?

If $B_0 = x$ then B_t is still a martingale

$$E_{x}[B_{\min(\tau_{a},\tau_{b},N)}] = x$$

$$N \to \infty, BCT \Rightarrow E_{x}[B_{\min(\tau_{a},\tau_{b})}] = x = E_{x}[B_{\tau_{a}}\mathbf{1}_{\tau_{a}<\tau_{b}}] + E_{x}[B_{\tau_{b}}\mathbf{1}_{\tau_{a}>\tau_{b}}]$$

$$= aP_{x}(\tau_{a} < \tau_{b}) + bP_{x}(\tau_{a} > \tau_{b})$$

$$f(x) = P_{x}(\tau_{a} < \tau_{b}) \qquad af(x) + b(1 - f(x)) = x$$

$$f(x) = P_{x}(\tau_{a} < \tau_{b}) = \frac{b-x}{b-a}$$

Brownian motion in \mathbb{R}^d

• $B_t = (B_t^1, \dots, B_t^d), B_t^i$ independent Brownian motions

2
$$B_t$$
 Markov with $P(B_t \in A \mid B_s = x) = \int_A \frac{1}{(2\pi(t-s))^{d/2}} e^{-\frac{|y-x|^2}{2(t-s)}} dy$

3 B_t has stationary independent mean zero increments with $E[|B_t - B_s|^2] = d(t - s)$

• $e^{\lambda \cdot B_t - \frac{1}{2}|\lambda|^2 t}$ is a martingale for any λ

Note that 1 does not depend on the basis: If B_t^1, \ldots, B_t^2 independent and \mathcal{O} is orthogonal, then the coordinates of $\mathcal{O}B_t$ are independent Brownian motions in fact

Theorem

Suppose X_1, X_2 independent and $\exists \theta \neq N\pi/2$ such that

 $X_1 \cos \theta + X_2 \sin \theta$, $-X_1 \sin \theta + X_2 \cos \theta$ independent

Then X_1 , X_2 are Gaussians (Maxwell)

Dirichlet problem

Given a bounded open subset $G \subset \mathbf{R}^d$ and a continuous function $f : \partial G \to \mathbf{R}$ find a continuous function $u : \overline{G} \to R$ such that

$$\begin{cases} \Delta u = 0 & \text{in } G \\ u|_{\partial G} = f \end{cases}$$

$$\Delta u \stackrel{\text{def}}{=} \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = 2d \lim_{r \to 0} r^{-2} \left(\frac{1}{|\partial S(r,x)|} \int_{\partial S(r,x)} u dS - u(x) \right)$$

Lemma

u harmonic in $G \Leftrightarrow u$ satisfies the mean value property: for all sufficiently small r > 0,

$$\frac{1}{|\partial S(r,x)|}\int_{\partial S(r,x)}udS=u(x)$$

Lemma

u harmonic in $G \Leftrightarrow u$ satisfies the mean value property: for all sufficiently small r > 0,

$$\frac{1}{|\partial S(r,x)|}\int_{\partial S(r,x)}udS=u(x)$$

Green's identity
$$\int_{G} v \Delta u dx = \int_{G} u \Delta v dx + \int_{\partial G} v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} dS$$
$$G = \{\delta < x < r\}, \qquad v = \begin{cases} \frac{\log r - \log |x|}{\log r - \log \delta} & d = 2\\ \frac{|x|^{2-d} - r^{2-d}}{\delta^{2-d} - r^{2-d}} & d > 2 \end{cases}$$
$$\det \rho \downarrow 0$$

 B_t *d*-dimensional Brownian motion starting at $x \in G$

$$\tau_{\boldsymbol{G}} = \inf\{t \ge 0 : \boldsymbol{B}(t) \notin \boldsymbol{G}\}$$

$$u(x) = E_x[f(B(\tau_G))]$$

"Theorem" If ∂G "nice" then *u* solves the Dirichlet problem

$$E_{x}[f(B(\tau_{G}))] = \int_{\partial G} f(y)\pi_{G}(x, dy), \quad \pi_{G}(x, \Gamma) = P_{x}(B(\tau_{G}) \in \Gamma), \quad \Gamma \subset \partial G$$

Example.
$$G = B(x, r), \quad \pi_G(x, \Gamma) = \frac{|\Gamma|}{|\partial S(x, r)|}, \quad \Gamma \subset S(x, r)$$

Brownian motion is invariant under rotations

Proposition

G bounded open $\subset \mathbb{R}^d$, *f* bounded measurable on ∂G . Then $u(x) = E_x[f(B(\tau_G))]$ is harmonic in *G*.

Proof.

 $B = B(x, r) \subset G$ $au_B \leq au_G$

Strong Markov property: $u(B(\tau_S)) = E_x[f(B(\tau_G)) | \mathcal{F}_{\tau_S}]$

$$u(x) = E_x[f(B(\tau_G))] = E_x[E_x[f(B(\tau_G)) | \mathcal{F}_{\tau_S}]]$$

= $E_x[u(B(\tau_S))]$
= $\int_{\partial S} u(y)\pi_S(x, dy)$
= $\frac{1}{|\partial S|} \int_{\partial S} u(y)dS$

So u satisfies the mean value property in G.

()

$a \in \partial G$

To complete the proof that *u* solves the Dirichlet problem we need

 $\lim_{x \to a, x \in G} E_x[f(B(\tau_G))] = f(a)$ It is not always true!

Proposition

If $\lim_{\substack{x \to a \\ x \in G}} P_x[\tau_G > \epsilon] = 0$, $\forall \epsilon > 0$ then for any bdd mble function $f : \partial G \to \mathbb{R}$ which is continuous at a, $\lim_{\substack{x \to a \\ x \in G}} E_x[f(B(\tau_G))] = f(a)$

Need:
$$\lim_{x\to a, x\in G} P_x \left(|B(\tau_G) - x| < \delta \right) = 1$$

$$\begin{aligned} P_x(|B(\tau_G) - x| < \delta) &\geq & P_x(\sup_{0 \le t \le \epsilon} |B(t) - x| < \delta, \ \tau_G \le \epsilon) \\ &\geq & P_x(\sup_{0 \le t \le \epsilon} |B(t) - x| < \delta) - P_x(\tau_G \le \epsilon) \\ &\to & 1 \ \text{as} \ x \to a, x \in G \ \text{then} \ \epsilon \downarrow 0 \end{aligned}$$

Proposition

 $a \in \partial G$ is *regular* if $P_a(\sigma_G = 0) = 1$ $\sigma_G = \inf\{t > 0 : B(t) \notin G\}$ a regular $\Leftrightarrow \lim_{x \to a, x \in G} E_x[f(B_{\tau_G})] = f(a) \ \forall f \text{ bdd mble, cont at } a$

Proof of \Rightarrow

Enough to prove $P_x(\sigma_G < \epsilon)$ lower semi-continuous in xThen $\limsup_{x \in G \\ x \in G} P_x(\sigma_G < \epsilon) \ge P_a(\sigma_G < \epsilon) = 1$ and $\sigma_G \ge \tau_G$ But $\int p(0, x, \delta, y) P_y(\exists s \in (0, \epsilon - \delta), B(s) \notin G)$ continuous and $\uparrow P_x(\sigma_G < \epsilon)$ as $\delta \downarrow 0$

Examples

- If ∂G is a smooth manifold near *a* then *a* is regular by LIL
- ② If ∃ cone *C* of height h > 0 and vertex at *a* such that $C \{a\} \subset \overline{G}^C$ then *a* is a regular (exterior cone condition)
- 3 $d \le 2$ always, $d \ge 3$ \exists counterexamples

Application to recurrence/transience of Brownian motion

$$G = \{ y \in \mathbf{R}^d : \delta < |y| < R \} \qquad f = \begin{cases} 0 & |y| = R \\ 1 & |y| = \delta \end{cases}$$

$$u(x) = E_x[f(B(\tau_G))] = P_x(\tau_\delta < \tau_R) = \begin{cases} \frac{\log H - \log |x|}{\log R - \log \delta} & d = 2\\ \frac{|x|^{2-d} - R^{2-d}}{\delta^{2-d} - R^{2-d}} & d > 2 \end{cases}$$

Theorem In $d \ge 2$, Brownian motion does not visit a point

$$P_x(\tau_0 < \tau_R) = \lim_{\delta \downarrow 0} P_x(\tau_\delta < \tau_R) = \lim_{\delta \downarrow 0} \frac{\log R - \log |x|}{\log R - \log \delta} = 0$$

Theorem In d = 2, Brownian motion is recurrent, ie. comes arbitrarily close to any point arbitrarily many times

Proof.

$$P_x(au_\delta < \infty) = \lim_{R\uparrow\infty} P_x(au_\delta < au_R) = \lim_{R\uparrow\infty} rac{\log R - \log |x|}{\log R - \log \delta} = 1$$

Theorem In $d \ge 3$, Brownian motion wanders off to infinity

$$P_{X}(\tau_{\delta} < \infty) = \lim_{R \uparrow \infty} \frac{|x|^{2-d} - R^{2-d}}{\delta^{2-d} - R^{2-d}} = \left(\frac{|x|}{\delta}\right)^{2-d} \text{ if } |x| > \delta, 0 \text{ otherwise}$$

$$P_{X}(\text{hit } |y| = \delta \text{ after time } t) = \int \frac{e^{-\frac{|x-y|^{2}}{2t}}}{(2\pi t)^{d/2}} P_{Y}(\tau_{\delta} < \infty) dy \to 0 \text{ as } t \to \infty$$

$$P_{X}(\liminf_{t \to \infty} |B(t)| > \delta) = 1$$

$$\delta \uparrow \infty \liminf_{t \to \infty} |B(t)| = \infty \quad a.s.$$