Strong Markov property of Brownian motion
$B_{t}, t \geq 0$ be a Brownian motion with respect to $\mathcal{F}_{t}, t \geq 0$
$\tau$ a bounded stopping time.
$\tilde{B}_{t}=B_{t+\tau}-B_{\tau}$.
Then $\tilde{B}_{t}$ is a Brownian motion independent of $\mathcal{F}_{\tau}$.
In other words, Brownian motion starts afresh at every stopping time.

## Proof.

optional stopping + martingale characterization of Brownian motion

## Reflection Principle

For all $x>0, t \geq 0$,

$$
P\left(\sup _{0 \leq s \leq t} B_{s} \geq x\right)=2 P\left(B_{t} \geq x\right)
$$

In particular $\sup _{0 \leq s \leq t} B_{s} \stackrel{d}{=}\left|B_{t}\right|$

## Proof.

$$
\begin{aligned}
& \tau_{x}=\inf \left\{t \geq 0: B_{t} \geq x\right\} \\
& \quad P\left(\sup _{0 \leq s \leq t} B_{s} \geq x\right)=P\left(B_{t} \geq x\right)+P\left(\sup _{0 \leq s \leq t} B_{s} \geq x, B_{t}<x\right)=P\left(\tau_{x} \leq t\right)
\end{aligned}
$$

$$
P\left(\sup _{0 \leq s \leq t} B_{s} \geq x, B_{t}<x\right)=P\left(\tau_{x} \leq t, B_{\tau_{x}+\left(t-\tau_{x}\right)}-B_{\tau_{x}}<0\right)=\frac{1}{2} P\left(\tau_{x} \leq t\right)
$$

$$
P\left(\tau_{x} \leq t\right)=2 \int_{x}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{y^{2}}{2 t}} d y
$$

Differentiate in $t$ to see that $\tau_{x}$ has density

$$
\begin{aligned}
f_{x}(t) & =\frac{1}{\sqrt{2 \pi}}\left(-\frac{1}{t^{3 / 2}} \int_{x}^{\infty} e^{-\frac{y^{2}}{2 t}} d y+\frac{1}{t^{5 / 2}} \int_{x}^{\infty} y^{2} e^{-\frac{y^{2}}{2 t}} d y\right) \\
& =\frac{x}{\sqrt{2 \pi t^{3}}} e^{-\frac{x^{2}}{2 t}}
\end{aligned}
$$

In particular $E\left[\tau_{x}\right]=\infty$

$$
\tau_{x}=\inf \left\{t \geq 0: x^{-1} B_{t}=1\right\}=\inf \left\{x^{2} t: \tilde{B}_{t}=x^{-1} B_{x^{2} t}=1\right\}=x^{2} \tilde{\tau}_{1}
$$

Note $\tau_{x}$ has stationary, independent increments, i.e. it is a Lévy process

## Law of the iterated logarithm (Khinchine)

$B_{t}, t \geq 0$ Brownian motion

$$
\limsup _{t \rightarrow 0} \frac{B_{t}}{\sqrt{2 t \log \log t^{-1}}}=1 \quad \text { a.s. }
$$

## Proof

To simplify expressions let $h(t)=\sqrt{2 t \log \log t^{-1}}$
Step 1. Is to show $\lim \sup _{t \rightarrow 0} \frac{B_{t}}{h(t)} \leq 1$ a.s.
Applying Doob's inequality to the martingale $\exp \left\{a X_{t}-a^{2} t / 2\right\}$

$$
P\left(\sup _{0 \leq s \leq t}\left\{B_{s}-a s / 2\right\} \geq \lambda\right) \leq e^{-a \lambda}
$$

Let $\epsilon>0 \quad 0<\theta<1 \quad t_{n}=\theta^{n} \quad a_{n}=(1+\epsilon) \theta^{-n} h\left(\theta^{n}\right) \quad \lambda_{n}=h\left(\theta^{n}\right) / 2$ Borel-Cantelli: $P\left(\sup _{0 \leq s \leq t_{n}} B_{s} \geq a_{n} t_{n} / 2+\lambda_{n}\right.$ i.o. $)=0$

## Proof of LIL

Step 2. Is to show $\lim \sup _{t \rightarrow 0} \frac{B_{t}}{h(t)} \geq 1$ a.s.
Let $\epsilon>0 \quad \theta=\epsilon^{2} / 16$

$$
A_{n}=\left\{B_{\theta^{n}}-B_{\theta^{n+1}} \geq(1-\sqrt{\theta}) h\left(\theta^{n}\right)\right\} \quad A_{n} \text { independent }
$$

If $\sum P\left(A_{n}\right)=\infty$ by Borel-Cantelli lemma $P\left(A_{n}\right.$ i.o. $)=1$
i.e. with probability one there are infinitely many $n$ for which

$$
B_{\theta^{n}} \geq(1-\sqrt{\theta}) h\left(\theta^{n}\right)+B_{\theta^{n+1}}
$$

Step $1 \Rightarrow \forall n \geq N, B_{\theta^{n+1}}<2 h\left(\theta^{n+1}\right) \stackrel{\text { symmetry }}{\Rightarrow} B_{\theta^{n+1}}>-2 h\left(\theta^{n+1}\right)$
so $B_{\theta^{n}} \geq(1-\sqrt{\theta}) h\left(\theta^{n}\right)-2 h\left(\theta^{n+1}\right) \geq(1-\epsilon) h\left(\theta^{n}\right)$
so $\lim \sup _{t \rightarrow 0} B_{t} / h(t) \geq(1-\epsilon)$
Hence it suffices to prove that $\sum P\left(A_{n}\right)=\infty$

## Proof of LIL

$$
\begin{aligned}
P\left(B_{\theta^{n}}-B_{\theta^{n+1}} \geq(1-\sqrt{\theta}) h\left(\theta^{n}\right)\right) & =\int_{\frac{(1-\sqrt{\theta}) h\left(\theta^{n}\right)}{\sqrt{\theta^{n}-\theta^{n+1}}} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x} \\
& \geq C(\log n)^{-1 / 2} n^{-\frac{(1-\sqrt{\theta})^{2}}{1-\theta}}
\end{aligned}
$$

by

$$
\int_{a}^{\infty} \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x \geq \frac{1}{a+a^{-1}} \frac{e^{-\frac{a^{2}}{2}}}{\sqrt{2 \pi}}
$$

Since $(1-\sqrt{\theta})^{2}=1-2 \sqrt{\theta}+\theta<1-\theta$, the series diverges

## Prop

$\left|\left\{t: B_{t}=0\right\}\right|=0$ and $\left\{t: B_{t}=0\right\}$ is perfect

## Proof.

Recall perfect = closed and any point is a limit point closed is obvious
$E\left[\int_{0}^{1} 1_{\left\{t: B_{t}=0\right\}}(s) d s\right]=\int_{0}^{1} P(0,0, s,\{0\}) d s=0 \Rightarrow\left|\left\{t: B_{t}=0\right\}\right|=0$
LIL $\Rightarrow 0$ is a limit point of $\left\{t\right.$ : $\left.B_{t}=0\right\}$
$B_{s}=0 \Rightarrow B_{t+s}-B_{s}$ Brownian motion so $s$ is a limit point of $\left\{t: B_{t+s}-B_{s}=0\right\}$
so $\left\{t: B_{t}=0\right\}$ is like a Cantor set. $\left\{t: B_{t}=0\right\}=\cup_{n=1}^{\infty} I_{n}, I_{n}$ disjoint intervals $B_{t}, t \in I_{n}$ is called a Brownian excursion

If $f_{t}$ is a continuous function on $[0, \infty)$ and $\tau_{x}=\inf \left\{t: f_{t} \geq x\right\}$ then $\tau_{x}$ is continuous on $[a, b]$ iff $\sup _{0 \leq s \leq t} f_{t}$ is strictly increasing on $\left[\tau_{a}, \tau_{b}\right]$

## Prop

$\left\{\tau_{x}\right\}_{x \geq 0}$ is not continuous in any interval

## Proof.

LIL $\Rightarrow$

$$
P\left(\tau_{x} \text { continuous on }[a, b]\right)=0
$$

Hence

$$
P\left(\bigcup_{a<b \in \mathbb{Q}}\left\{\tau_{x} \text { continuous on }[a, b]\right\}\right)=0
$$

So $\left\{\tau_{x}\right\}_{x \geq 0}$ is a non-decreasing, discontinuous Lévy process

Another way to compute the distribution of $\tau_{x}, x \geq 0$
$M_{t}=e^{\lambda B_{t}-\frac{1}{2} \lambda^{2} t}$ is a martingale
Optional stopping $\Rightarrow E\left[e^{\lambda B_{\min (\tau x, B)}-\frac{1}{2} \lambda^{2} \min \left(\tau_{x}, B\right)}\right]=1$
$\mathrm{BCT} \Rightarrow E\left[e^{\lambda B_{\tau x}-\frac{1}{2} \lambda^{2} \tau_{x}}\right]=1, \quad \lambda \geq 0$
so $E\left[e^{-\lambda \tau_{x}}\right]=e^{-\sqrt{2 \lambda} x}, \quad \lambda \geq 0$
In particular if $\tau_{x}$ and $\tilde{\tau}_{y}$ are independent then $\tau_{x}+\tilde{\tau}_{y} \stackrel{\text { dist }}{=} \tau_{x+y}$

## Stable laws

$X$ has stable distribution if for each $n$ there is $0<\alpha \leq 2$ and $\mu_{n}$ such that if $X_{1}, X_{2}, \ldots$ are iid with $X_{i} \stackrel{\text { dist }}{=} X$ then

$$
\frac{X_{1}+\cdots+X_{n}-\mu_{n}}{n^{1 / \alpha}} \stackrel{\text { dist }}{=} X
$$

Examples: Gaussian $\quad \alpha=2$; Cauchy $\quad \alpha=1$; $\tau_{1} \quad \alpha=1 / 2$ Subordinator means $X_{t}$ non-decreasing (so it can be used as a time). $\tau_{x}, x \geq 0$ is a stable subordinator eg. $B_{\tau_{x}}=x$
$\tau=\inf \left\{t \geq 0: B_{t}\right.$ hits $\left.b+m t\right\}, b, m>0 . \quad$ What is $P(\tau<\infty) ?$

$$
E\left[e^{\lambda B_{\min (\tau, N)}-\frac{1}{2} \lambda^{2} \min (\tau, N)}\right]=1
$$

$B_{\min (\tau, N)} \leq b+m \min (\tau, N)$ so if $\lambda m \leq \frac{1}{2} \lambda^{2}$ we can let $N \rightarrow \infty$ to get

$$
E\left[e^{\lambda(b+m \tau)-\frac{1}{2} \lambda^{2} \tau} 1_{\tau<\infty}\right]+\lim _{N \rightarrow \infty} E\left[e^{\lambda B_{\min (\tau, N)}-\frac{1}{2} \lambda^{2} \min (\tau, N)} 1_{\tau=\infty}\right]=1
$$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} E\left[e^{\lambda B_{\min (\tau, N)}-\frac{1}{2} \lambda^{2} \min (\tau, N)} 1_{\tau=\infty}\right] \\
& \quad \leq \lim _{N \rightarrow \infty} E\left[e^{\lambda(b+m \min (\tau, N))-\frac{1}{2} \lambda^{2} \min (\tau, N)} 1_{\tau=\infty}\right] \\
& \quad=0
\end{aligned}
$$

so

$$
E\left[e^{\left(\lambda m-\frac{1}{2} \lambda^{2}\right) \tau} 1_{\tau<\infty}\right]=e^{-\lambda b}
$$

Let $\lambda \downarrow 2 m$ to get

$$
P(\tau<\infty)=e^{-2 m b}
$$

Brownian motion starting at $x$ : $B_{t}+x, B_{0}=0$

$$
\begin{aligned}
& P_{x}(A)=P\left(A \mid B_{0}=x\right) \\
& a<x<b \quad \text { What is } P_{x}\left(\tau_{a}<\tau_{b}\right) ? \\
& \text { If } B_{0}=x \text { then } B_{t} \text { is still a martingale } \\
& E_{x}\left[B_{\min \left(\tau_{a}, \tau_{b}, N\right)}\right]=x \\
& N \rightarrow \infty, B C T \Rightarrow E_{x}\left[B_{\min \left(\tau_{a}, \tau_{b}\right)}\right]=x=E_{x}\left[B_{\tau_{a}} 1_{\tau_{a}<\tau_{b}}\right]+E_{x}\left[B_{\tau_{b}} 1_{\tau_{a}>\tau_{b}}\right] \\
& =a P_{x}\left(\tau_{a}<\tau_{b}\right)+b P_{x}\left(\tau_{a}>\tau_{b}\right) \\
& f(x)=P_{x}\left(\tau_{a}<\tau_{b}\right) \quad a f(x)+b(1-f(x))=x \\
& f(x)=P_{x}\left(\tau_{a}<\tau_{b}\right)=\frac{b-x}{b-a}
\end{aligned}
$$

## Brownian motion in $\mathbb{R}^{d}$

(1) $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right), B_{t}^{i}$ independent Brownian motions
(2) $B_{t}$ Markov with $P\left(B_{t} \in A \mid B_{s}=x\right)=\int_{A} \frac{1}{(2 \pi(t-s))^{d / 2}} e^{-\frac{|y-x|^{2}}{2(t-s)}} d y$
(3) $B_{t}$ has stationary independent mean zero increments with $E\left[\left|B_{t}-B_{s}\right|^{2}\right]=d(t-s)$
(4) $e^{\lambda \cdot B_{t}-\frac{1}{2}|\lambda|^{2} t}$ is a martingale for any $\lambda$

Note that 1 does not depend on the basis: If $B_{t}^{1}, \ldots, B_{t}^{2}$ independent and $\mathcal{O}$ is orthogonal, then the coordinates of $\mathcal{O} B_{t}$ are independent Brownian motions in fact

## Theorem

Suppose $X_{1}, X_{2}$ independent and $\exists \theta \neq N \pi / 2$ such that

$$
X_{1} \cos \theta+X_{2} \sin \theta, \quad-X_{1} \sin \theta+X_{2} \cos \theta \quad \text { independent }
$$

Then $X_{1}, X_{2}$ are Gaussians (Maxwell)

## Dirichlet problem

Given a bounded open subset $G \subset \mathbf{R}^{d}$ and a continuous function $f: \partial G \rightarrow \mathbf{R}$ find a continuous function $u: \bar{G} \rightarrow R$ such that

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } G \\
\left.u\right|_{\partial G}=f
\end{array}\right.
$$

$$
\Delta u \stackrel{\text { def }}{=} \sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}=2 d \lim _{r \rightarrow 0} r^{-2}\left(\frac{1}{|\partial S(r, x)|} \int_{\partial S(r, x)} u d S-u(x)\right)
$$

## Lemma

$u$ harmonic in $G \Leftrightarrow u$ satisfies the mean value property: for all sufficiently small $r>0$,

$$
\frac{1}{|\partial S(r, x)|} \int_{\partial S(r, x)} u d S=u(x)
$$

## Lemma

$u$ harmonic in $G \Leftrightarrow u$ satisfies the mean value property: for all sufficiently small $r>0$,

$$
\frac{1}{|\partial S(r, x)|} \int_{\partial S(r, x)} u d S=u(x)
$$

## Proof.

Green's identity $\int_{G} v \Delta u d x=\int_{G} u \Delta v d x+\int_{\partial G} v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n} d S$
$G=\{\delta<x<r\}$,

$$
v= \begin{cases}\log r-\log |x| \\ \log r-\log \delta & d=2 \\ \frac{x)^{2}-r^{2}-d}{\delta^{2}-d-r^{2-d}} & d>2\end{cases}
$$

$B_{t} d$-dimensional Brownian motion starting at $x \in G$

$$
\begin{gathered}
\tau_{G}=\inf \{t \geq 0: B(t) \notin G\} \\
u(x)=E_{x}\left[f\left(B\left(\tau_{G}\right)\right)\right]
\end{gathered}
$$

"Theorem" If $\partial G$ "nice" then $u$ solves the Dirichlet problem
$E_{x}\left[f\left(B\left(\tau_{G}\right)\right)\right]=\int_{\partial G} f(y) \pi_{G}(x, d y), \quad \pi_{G}(x, \Gamma)=P_{x}\left(B\left(\tau_{G}\right) \in \Gamma\right), \quad \Gamma \subset \partial G$

Example. $G=B(x, r), \quad \pi_{G}(x, \Gamma)=\frac{|\Gamma|}{|\partial S(x, r)|}, \quad \Gamma \subset S(x, r)$
Brownian motion is invariant under rotations
$\therefore \pi_{G}(x, \cdot)$ is invariant under rotations

## Proposition

$G$ bounded open $\subset \mathbb{R}^{d}, f$ bounded measurable on $\partial G$. Then $u(x)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]$ is harmonic in $G$.

## Proof.

$B=B(x, r) \subset G \quad \tau_{B} \leq \tau_{G}$
Strong Markov property: $\quad u\left(B\left(\tau_{S}\right)\right)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right) \mid \mathcal{F}_{\tau_{S}}\right]$

$$
\begin{aligned}
u(x)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right] & =E_{X}\left[E_{X}\left[f\left(B\left(\tau_{G}\right)\right) \mid \mathcal{F}_{\tau_{S}}\right]\right] \\
& =E_{X}\left[u\left(B\left(\tau_{S}\right)\right)\right] \\
& =\int_{\partial S} u(y) \pi_{S}(x, d y) \\
& =\frac{1}{|\partial S|} \int_{\partial S} u(y) d S
\end{aligned}
$$

So $u$ satisfies the mean value property in $G$.

$$
a \in \partial G
$$

To complete the proof that $u$ solves the Dirichlet problem we need

$$
\lim _{x \rightarrow a, x \in G} E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]=f(a) \quad \text { It is not always true! }
$$

## Proposition

If $\lim _{\substack{x \rightarrow a \\ x \in G}} P_{X}\left[\tau_{G}>\epsilon\right]=0, \forall \epsilon>0$ then for any bdd mble function $f: \partial G \rightarrow \mathbb{R}$ which is continuous at $a, \lim _{\substack{x \rightarrow a \\ x \in G}} E_{x}\left[f\left(B\left(\tau_{G}\right)\right)\right]=f(a)$

## Proof.

Need: $\lim _{x \rightarrow a, x \in G} P_{X}\left(\left|B\left(\tau_{G}\right)-x\right|<\delta\right)=1$

$$
\begin{aligned}
P_{x}\left(\left|B\left(\tau_{G}\right)-x\right|<\delta\right) & \geq P_{x}\left(\sup _{0 \leq t \leq \epsilon}|B(t)-x|<\delta, \tau_{G} \leq \epsilon\right) \\
& \geq P_{x}\left(\sup _{0 \leq t \leq \epsilon}|B(t)-x|<\delta\right)-P_{x}\left(\tau_{G} \leq \epsilon\right) \\
& \rightarrow 1 \text { as } x \rightarrow a, x \in G \text { then } \epsilon \downarrow 0
\end{aligned}
$$

## Proposition

$a \in \partial G$ is regular if $P_{a}\left(\sigma_{G}=0\right)=1 \quad \sigma_{G}=\inf \{t>0: B(t) \notin G\}$ a regular $\Leftrightarrow \lim _{x \rightarrow a, x \in G} E_{x}\left[f\left(B_{\tau_{G}}\right)\right]=f(a) \forall f$ bdd mble, cont at $a$

## Proof of $\Rightarrow$

Enough to prove $P_{X}\left(\sigma_{G}<\epsilon\right)$ lower semi-continuous in $x$ Then $\lim \sup _{\substack{x \rightarrow a \\ x \in G}} P_{x}\left(\sigma_{G}<\epsilon\right) \geq P_{a}\left(\sigma_{G}<\epsilon\right)=1$ and $\sigma_{G} \geq \tau_{G}$ But $\int p(0, x, \delta, y) P_{y}(\exists s \in(0, \epsilon-\delta), B(s) \notin G)$ continuous and $\uparrow P_{X}\left(\sigma_{G}<\epsilon\right)$ as $\delta \downarrow 0$

## Examples

(1) If $\partial G$ is a smooth manifold near $a$ then $a$ is regular by LIL
(2) If $\exists$ cone $C$ of height $h>0$ and vertex at a such that
$C-\{a\} \subset \bar{G}^{C}$ then $a$ is a regular (exterior cone condition)
(3) $d \leq 2$ always, $d \geq 3 \exists$ counterexamples

## Application to recurrence/transience of Brownian motion

$$
\begin{gathered}
G=\left\{y \in \mathbf{R}^{d}: \delta<|y|<R\right\} \quad f= \begin{cases}0 & |y|=R \\
1 & |y|=\delta\end{cases} \\
u(x)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]=P_{x}\left(\tau_{\delta}<\tau_{R}\right)= \begin{cases}\frac{\log R-\log |x|}{\log R-\log \delta} & d=2 \\
\frac{|x|^{2-d}-R^{2}-d}{\delta^{2-d}-R^{2-d}} & d>2\end{cases}
\end{gathered}
$$

Theorem In $d \geq 2$, Brownian motion does not visit a point

## Proof.

$$
P_{x}\left(\tau_{0}<\tau_{R}\right)=\lim _{\delta \downarrow 0} P_{x}\left(\tau_{\delta}<\tau_{R}\right)=\lim _{\delta \not 0} \frac{\log R-\log |x|}{\log R-\log \delta}=0
$$

Theorem $\ln d=2$, Brownian motion is recurrent, ie. comes arbitrarily close to any point arbitrarily many times

Proof.

$$
P_{x}\left(\tau_{\delta}<\infty\right)=\lim _{R \uparrow \infty} P_{x}\left(\tau_{\delta}<\tau_{R}\right)=\lim _{R \uparrow \infty} \frac{\log R-\log |x|}{\log R-\log \delta}=1
$$

Theorem In $d \geq 3$, Brownian motion wanders off to infinity

## Proof.

$P_{x}\left(\tau_{\delta}<\infty\right)=\lim _{R \uparrow \infty} \frac{|x|^{2-d}-R^{2-d}}{\delta^{2-d}-R^{2-d}}=\left(\frac{|x|}{\delta}\right)^{2-d}$ if $|x|>\delta, 0$ otherwise $P_{x}($ hit $|y|=\delta$ after time $t)=\int \frac{e^{-\frac{|x-y|^{2}}{2 t}}}{(2 \pi t)^{d / 2}} P_{y}\left(\tau_{\delta}<\infty\right) d y \rightarrow 0$ as $t \rightarrow \infty$ $P_{x}\left(\liminf _{t \rightarrow \infty}|B(t)|>\delta\right)=1$ $\delta \uparrow \infty \liminf _{t \rightarrow \infty}|B(t)|=\infty \quad$ a.s.

