Brownian motion in \mathbb{R}^{d}

(1) $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right), B_{t}^{i}$ independent Brownian motions
(2) B_{t} Markov with $P\left(B_{t} \in A \mid B_{s}=x\right)=\int_{A} \frac{1}{(2 \pi(t-s))^{d / 2}} e^{-\frac{|y-x|^{2}}{2(t-s)}} d y$
(3) B_{t} has stationary independent mean zero increments with $E\left[\left|B_{t}-B_{s}\right|^{2}\right]=d(t-s)$
(4) $e^{\lambda \cdot B_{t}-\frac{1}{2}|\lambda|^{2} t}$ is a martingale for any λ

Note that 1 does not depend on the basis: If $B_{t}^{1}, \ldots, B_{t}^{2}$ independent and \mathcal{O} is orthogonal, then the coordinates of $\mathcal{O} B_{t}$ are independent Brownian motions in fact

Theorem

Suppose X_{1}, X_{2} independent and $\exists \theta \neq N \pi / 2$ such that

$$
X_{1} \cos \theta+X_{2} \sin \theta, \quad-X_{1} \sin \theta+X_{2} \cos \theta \quad \text { independent }
$$

Then X_{1}, X_{2} are Gaussians (Maxwell)

Dirichlet problem

Given a bounded open subset $G \subset \mathbf{R}^{d}$ and a continuous function $f: \partial G \rightarrow \mathbf{R}$ find a continuous function $u: \bar{G} \rightarrow R$ such that

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } G \\
\left.u\right|_{\partial G}=f
\end{array}\right.
$$

$$
\Delta u \stackrel{\text { def }}{=} \sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}=2 d \lim _{r \rightarrow 0} r^{-2}\left(\frac{1}{|\partial S(r, x)|} \int_{\partial S(r, x)} u d S-u(x)\right)
$$

Lemma

u harmonic in $G \Leftrightarrow u$ satisfies the mean value property: for all sufficiently small $r>0$,

$$
\frac{1}{|\partial S(r, x)|} \int_{\partial S(r, x)} u d S=u(x)
$$

Lemma

u harmonic in $G \Leftrightarrow u$ satisfies the mean value property: for all sufficiently small $r>0$,

$$
\frac{1}{|\partial S(r, x)|} \int_{\partial S(r, x)} u d S=u(x)
$$

Proof.

Green's identity $\int_{G} v \Delta u d x=\int_{G} u \Delta v d x+\int_{\partial G} v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n} d S$
$G=\{\delta<x<r\}$,
$B_{t} d$-dimensional Brownian motion starting at $x \in G$

$$
\begin{gathered}
\tau_{G}=\inf \{t \geq 0: B(t) \notin G\} \\
u(x)=E_{x}\left[f\left(B\left(\tau_{G}\right)\right)\right]
\end{gathered}
$$

"Theorem" If ∂G "nice" then u solves the Dirichlet problem
$E_{x}\left[f\left(B\left(\tau_{G}\right)\right)\right]=\int_{\partial G} f(y) \pi_{G}(x, d y), \quad \pi_{G}(x, \Gamma)=P_{x}\left(B\left(\tau_{G}\right) \in \Gamma\right), \quad \Gamma \subset \partial G$

Example. $G=B(x, r), \quad \pi_{G}(x, \Gamma)=\frac{|\Gamma|}{|\partial S(x, r)|}, \quad \Gamma \subset S(x, r)$
Brownian motion is invariant under rotations
$\therefore \pi_{G}(x, \cdot)$ is invariant under rotations

Proposition

G bounded open $\subset \mathbb{R}^{d}, f$ bounded measurable on ∂G. Then $u(x)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]$ is harmonic in G.

Proof.

$B=B(x, r) \subset G \quad \tau_{B} \leq \tau_{G}$
Strong Markov property: $\quad u\left(B\left(\tau_{S}\right)\right)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right) \mid \mathcal{F}_{\tau_{S}}\right]$

$$
\begin{aligned}
u(x)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right] & =E_{X}\left[E_{X}\left[f\left(B\left(\tau_{G}\right)\right) \mid \mathcal{F}_{\tau_{S}}\right]\right] \\
& =E_{X}\left[u\left(B\left(\tau_{S}\right)\right)\right] \\
& =\int_{\partial S} u(y) \pi_{S}(x, d y) \\
& =\frac{1}{|\partial S|} \int_{\partial S} u(y) d S
\end{aligned}
$$

So u satisfies the mean value property in G.

$$
a \in \partial G
$$

To complete the proof that u solves the Dirichlet problem we need

$$
\lim _{x \rightarrow a, x \in G} E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]=f(a) \quad \text { It is not always true! }
$$

Proposition

If $\lim _{\substack{x \rightarrow a \\ x \in G}} P_{X}\left[\tau_{G}>\epsilon\right]=0, \forall \epsilon>0$ then for any bdd mble function $f: \partial G \rightarrow \mathbb{R}$ which is continuous at $a, \lim _{\substack{x \rightarrow a \\ x \in G}} E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]=f(a)$

Proof.

Need: $\lim _{x \rightarrow a, x \in G} P_{X}\left(\left|B\left(\tau_{G}\right)-x\right|<\delta\right)=1$

$$
\begin{aligned}
P_{x}\left(\left|B\left(\tau_{G}\right)-x\right|<\delta\right) & \geq P_{x}\left(\sup _{0 \leq t \leq \epsilon}|B(t)-x|<\delta, \tau_{G} \leq \epsilon\right) \\
& \geq P_{x}\left(\sup _{0 \leq t \leq \epsilon}|B(t)-x|<\delta\right)-P_{x}\left(\tau_{G} \leq \epsilon\right) \\
& \rightarrow 1 \text { as } x \rightarrow a, x \in G \text { then } \epsilon \downarrow 0
\end{aligned}
$$

Proposition

$a \in \partial G$ is regular if $P_{a}\left(\sigma_{G}=0\right)=1 \quad \sigma_{G}=\inf \{t>0: B(t) \notin G\}$ a regular $\Leftrightarrow \lim _{x \rightarrow a, x \in G} E_{x}\left[f\left(B_{\tau_{G}}\right)\right]=f(a) \forall f$ bdd mble, cont at a

Proof of \Rightarrow

Enough to prove $P_{X}\left(\sigma_{G}<\epsilon\right)$ lower semi-continuous in x Then $\lim \sup _{\substack{x \rightarrow a \\ x \in G}} P_{x}\left(\sigma_{G}<\epsilon\right) \geq P_{a}\left(\sigma_{G}<\epsilon\right)=1$ and $\sigma_{G} \geq \tau_{G}$ But $\int p(0, x, \delta, y) P_{y}(\exists s \in(0, \epsilon-\delta), B(s) \notin G)$ continuous and $\uparrow P_{X}\left(\sigma_{G}<\epsilon\right)$ as $\delta \downarrow 0$

Examples

(1) If ∂G is a smooth manifold near a then a is regular by LIL
(2) If \exists cone C of height $h>0$ and vertex at a such that
$C-\{a\} \subset \bar{G}^{C}$ then a is a regular (exterior cone condition)
(3) $d \leq 2$ always, $d \geq 3 \exists$ counterexamples

Application to recurrence/transience of Brownian motion

$$
\begin{gathered}
G=\left\{y \in \mathbf{R}^{d}: \delta<|y|<R\right\} \quad f= \begin{cases}0 & |y|=R \\
1 & |y|=\delta\end{cases} \\
u(x)=E_{X}\left[f\left(B\left(\tau_{G}\right)\right)\right]=P_{x}\left(\tau_{\delta}<\tau_{R}\right)= \begin{cases}\frac{\log R-\log |x|}{\log R-\log \delta} & d=2 \\
\frac{|x|^{2-d}-R^{2}-d}{\delta^{2-d}-R^{2-d}} & d>2\end{cases}
\end{gathered}
$$

Theorem In $d \geq 2$, Brownian motion does not visit a point

Proof.

$$
P_{x}\left(\tau_{0}<\tau_{R}\right)=\lim _{\delta \not 0} P_{x}\left(\tau_{\delta}<\tau_{R}\right)=\lim _{\delta \not 0} \frac{\log R-\log |x|}{\log R-\log \delta}=0
$$

Theorem $\ln d=2$, Brownian motion is recurrent, ie. comes arbitrarily close to any point arbitrarily many times

Proof.

$$
P_{x}\left(\tau_{\delta}<\infty\right)=\lim _{R \uparrow \infty} P_{x}\left(\tau_{\delta}<\tau_{R}\right)=\lim _{R \uparrow \infty} \frac{\log R-\log |x|}{\log R-\log \delta}=1
$$

Theorem In $d \geq 3$, Brownian motion wanders off to infinity

Proof.

$P_{x}\left(\tau_{\delta}<\infty\right)=\lim _{R \uparrow \infty} \frac{|x|^{2-d}-R^{2-d}}{\delta^{2-d}-R^{2-d}}=\left(\frac{|x|}{\delta}\right)^{2-d}$ if $|x|>\delta$
$P_{x}($ hit $|y|=\delta$ after time $t)=\int \frac{e^{-\frac{|x-y|^{2}}{2 t}}}{(2 \pi t)^{d / 2}} P_{y}\left(\tau_{\delta}<\infty\right) d y \rightarrow 0$ as $t \rightarrow \infty$ $P_{x}\left(\liminf _{t \rightarrow \infty}|B(t)|>\delta\right)=1$
$\delta \uparrow \infty \quad \liminf _{t \rightarrow \infty}|B(t)|=\infty \quad$ a.s.
$\int_{0}^{t} B(s) d B(s)$
Based on experience with Riemann integrals

$$
\int_{0}^{t} B(s) d B(s)=\lim _{n \rightarrow \infty} \sum_{j=0}^{\left[2^{n} t\right]-1} B\left(t_{j}^{n}\right)\left(B\left(\frac{j+1}{2^{n}}\right)-B\left(\frac{j}{2^{n}}\right)\right)
$$

for some choice of $t_{j}^{n} \in\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right]$. Lets try two choices, the right and left endpoints.

$$
\begin{aligned}
L_{t} & =\lim _{n \rightarrow \infty} \sum_{j=0}^{\left\lfloor 2^{n} t\right\rfloor-1} B\left(\frac{j}{2^{n}}\right)\left(B\left(\frac{j+1}{2^{n}}\right)-B\left(\frac{j}{2^{n}}\right)\right) \\
R_{t} & =\lim _{n \rightarrow \infty} \sum_{j=0}^{\left.\left[2^{n}\right\rfloor\right\rfloor-1} B\left(\frac{j+1}{2^{n}}\right)\left(B\left(\frac{j+1}{2^{n}}\right)-B\left(\frac{j}{2^{n}}\right)\right) .
\end{aligned}
$$

$$
\begin{gathered}
L_{t}=\lim _{n \rightarrow \infty} \sum_{j=0}^{\left\lfloor 2^{n} t\right\rfloor-1} B\left(\frac{j}{2^{n}}\right)\left(B\left(\frac{j+1}{2^{n}}\right)-B\left(\frac{j}{2^{n}}\right)\right) \\
R_{t}=\lim _{n \rightarrow \infty} \sum_{j=0}^{\left[2^{n t}\right\rfloor-1} B\left(\frac{j+1}{2^{n}}\right)\left(B\left(\frac{j+1}{2^{n}}\right)-B\left(\frac{j}{2^{n}}\right)\right) . \\
R_{t}-L_{t}=t \\
R_{t}+L_{t}=\lim _{n \rightarrow \infty} \sum_{j=0}^{\left[2^{n} t\right\rfloor-1}\left(B^{2}\left(\frac{j+1}{2^{n}}\right)-B^{2}\left(\frac{j}{2^{n}}\right)\right)=B^{2}(t) . \\
L_{t}=\frac{1}{2}\left(\left[L_{t}+R_{t}\right]-\left[R_{t}-L_{t}\right]\right)=\frac{1}{2}\left(B^{2}(t)-t\right) \quad R_{t}=\frac{1}{2}\left(B^{2}(t)+t\right)
\end{gathered}
$$

The choice of t_{j}^{n} matters! This is why Riemann told you to only integrate functions of bounded variation.

Which one is correct?
$\int_{0}^{t} B d B=\frac{1}{2}\left(B^{2}(t)-t\right)$ or $\frac{1}{2}\left(B^{2}(t)+t\right)$?
Or something else??
eg. midpoint rule gives $\int_{0}^{t} B d B=\frac{1}{2} B^{2}(t)$ which looks reasonable
Not really a mathematical question. A modeling question
Of all choices two have some special properties:
$L_{t}=\int_{0}^{t} B(s) d B(s)=\frac{1}{2}\left(B^{2}(t)-t\right)$ is a martingale : Itô integral
Midpoint rule $\int_{0}^{t} B(s) \circ d B(s)=\frac{1}{2} B^{2}(t)$ looks like ordinary calculus :
Stratonovich integral
We will always use the Itô integral and think of Stratonovich as a simple transformation of it which is sometimes useful in applications (eg. Math finance: Itô, Math biology: Sometimes Stratonovich)

Definition: Progressively measurable

$\sigma(s, \omega)$ is called progressively measurable if
(1) i. $\sigma(s, \omega)$ is $\mathcal{B}[0, \infty) \times \mathcal{F}$ measurable;
(2) ii. For all $t \geq 0$, the map $[0, t] \times \Omega \rightarrow \mathbb{R}$ given by $\sigma(s, \omega)$ is $\mathcal{B}[0, t] \times \mathcal{F}_{t}$ measurable.
$\mathcal{B}[0, t]$ denotes the Borel σ-algebra on $[0, t]$.
Informally, $\sigma(s, \omega)$ is nonanticipating $=$ uses information about ω contained in \mathcal{F}_{s}.

Definition: Simple Functions

$\sigma(s, \omega)$ is called simple if there exists a partition $0 \leq s_{0}<s_{1}<\cdots$ of $[0, \infty)$ and bounded random variables $\sigma_{j}(\omega) \in \mathcal{F}_{s_{j}}$ such that $\sigma(s, \omega)=\sigma_{j}(\omega)$ for $s_{j} \leq s<s_{j+1}$.

Definition: Stochastic Integral for Simple Functions

Given such a $\sigma(s, \omega)=\sigma_{j}(\omega)$ for $s_{j} \leq s<s_{j+1}, \sigma_{j}(\omega) \in \mathcal{F}_{s_{j}}$ define
$\int_{0}^{t} \sigma(s, \omega) d B(s)=\sum_{j=0}^{J(t)-1} \sigma_{j}(\omega)\left(B\left(s_{j+1}\right)-B\left(s_{j}\right)\right)+\sigma_{J(t)}(\omega)\left(B(t)-B\left(s_{J(t)}\right)\right)$
where $s_{J(t)}<t \leq s_{J(t)+1}$.

Basic properties

(1) $\int_{0}^{t}\left(c_{1} \sigma_{1}+c_{2} \sigma_{2}\right) d B=c_{1} \int_{0}^{t} \sigma_{1} d B+c_{2} \int_{0}^{t} \sigma_{2} d B$.
(2) $\int_{0}^{t} \sigma d B$ is a continuous martingale.
(3) $E\left[\left(\int_{0}^{t} \sigma(s, \omega) d B(s)\right)^{2}\right]=E\left[\int_{0}^{t} \sigma^{2}(s, \omega) d s\right]$.
(4) $Z(t)=\exp \left\{\int_{0}^{t} \sigma d B-\frac{1}{2} \int_{0}^{t} \sigma^{2} d s\right\}$ is a continuous martingale.

Lemma

Suppose that σ is progressively measurable and that for each $t \geq 0$,

$$
E\left[\int_{0}^{t} \sigma^{2}(s, \omega) d s\right]<\infty
$$

Then there is a sequence σ_{n} of simple progressively measurable functions such that

$$
E\left[\int_{0}^{t}\left(\sigma(s, \omega)-\sigma_{n}(s, \omega)\right)^{2} d s\right] \rightarrow 0 .
$$

Proof

We can assume that σ is bounded For if $\sigma_{N}=\sigma$ for $|\sigma| \leq N$ and 0 otherwise then $\sigma_{N} \rightarrow \sigma$ and $\left|\sigma_{N}-\sigma\right|^{2} \leq 4|\sigma|^{2}$ so by the dominated convergence theorem $E\left[\int_{0}^{t}\left(\sigma-\sigma_{N}\right)^{2} d s\right] \rightarrow 0$.

Proof.

Furthermore we can assume that σ is continuous in s
for if σ is bounded then $\sigma_{h}=h^{-1} \int_{t-h}^{t} \sigma d s$ are continuous progressively measurable and converge to σ as $h \rightarrow 0$. By the bounded convergence theorem

$$
E\left[\int_{0}^{t}\left(\sigma-\sigma_{h}\right)^{2} d s\right] \rightarrow 0
$$

For σ continuous bounded and progressively measurable let

$$
\sigma_{n}(s, \omega)=\sigma\left(\frac{\lfloor n s\rfloor}{n}, \omega\right)
$$

These are progressively measurable, bounded and simple functions converging to σ and again by the bounded convergence theorem,

$$
E\left[\int_{0}^{t}\left(\sigma-\sigma_{n}\right)^{2} d s\right] \rightarrow 0
$$

Theorem (Definition of the Itô Integral)

Let $\sigma(s, \omega)$ be progressively measurable and for each $t \geq 0$, $E\left[\int_{0}^{t} \sigma^{2} d s\right]<\infty$. Let σ_{n} be simple functions with $E\left[\int_{0}^{t}\left(\sigma_{n}-\sigma\right)^{2} d s\right] \rightarrow 0$ and set

$$
X_{n}(t, \omega)=\int_{0}^{t} \sigma_{n}(s, \omega) d B(s) .
$$

Then

$$
X(t, \omega)=\lim _{n \rightarrow \infty} X_{n}(t, \omega)
$$

exists uniformly in probability, i.e. for each $T>0$ and $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\sup _{0 \leq t \leq T}\left|X_{N}(t, \omega)-X(t, \omega)\right| \geq \epsilon\right)=0 .
$$

Furthermore the limit is independent of the choice of approximating sequence $\sigma_{n} \rightarrow \sigma$. The limit $X(t, \omega)$ is the Itô integral

$$
X(t)=\int_{0}^{t} \sigma(s) d B(s)
$$

Proof.

$X_{n}(t)-X_{m}(t)=\int_{0}^{t}\left(\sigma_{n}-\sigma_{m}\right) d B$ is a continuous martingale so by Doob's inequality

$$
\begin{aligned}
P\left(\sup _{0 \leq t \leq T}\left|X_{n}(t)-X_{m}(t)\right| \geq \epsilon\right) & \leq \epsilon^{-2} E\left[\left(X_{n}-X_{m}\right)^{2}(T)\right] \\
& =\epsilon^{-2} E\left[\int_{0}^{T}\left(\sigma_{n}-\sigma_{m}\right)^{2} d s\right]
\end{aligned}
$$

So $X_{n}-X_{m}$ is uniformly Cauchy in probability and therefore there exists a progressively measurable X with

$$
P\left(\sup _{0 \leq t \leq T}\left|X(t, \omega)-X_{n}(t, \omega)\right| \geq \epsilon\right) \xrightarrow{n \rightarrow \infty} 0 \quad \epsilon>0
$$

If $\sigma_{n}^{\prime} \xrightarrow{L^{2}} \sigma$ and $X_{n}^{\prime}=\int_{0}^{t} \sigma_{n}^{\prime} d B, P\left(\sup _{0 \leq t \leq T}\left|X_{n}-X_{n}^{\prime}\right| \geq \epsilon\right) \rightarrow 0$ so that X_{n} and X_{n}^{\prime} have the same limit.

Basic properties of the Itô Integral

(1) $\int_{0}^{t}\left(c_{1} \sigma_{1}+c_{2} \sigma_{2}\right) d B=c_{1} \int_{0}^{t} \sigma_{1} d B+c_{2} \int_{0}^{t} \sigma_{2} d B$.
(2) $\int_{0}^{t} \sigma d B$ is a continuous martingale.
(3) $E\left[\left(\int_{0}^{t} \sigma(s, \omega) d B(s)\right)^{2}\right]=E\left[\int_{0}^{t} \sigma^{2}(s, \omega) d s\right]$.
(9) If $|\sigma| \leq C$ then $Z(t)=\exp \left\{\int_{0}^{t} \sigma d B-\frac{1}{2} \int_{0}^{t} \sigma^{2} d s\right\}$ is a continuous martingale

proof

- By construction
(2) Continuity follows from the construction. To prove the limit is a martingale we have $E\left[X_{n}(t) \mid \mathcal{F}_{s}\right]=X_{n}(s)$ and $X_{n} \rightarrow X$ in L^{2}, therefore in L^{1} as well. The L^{1} limit of a martingale is a martingale.
(3) $X_{n}^{2}(t)-\int_{0}^{t} \sigma_{n}^{2}(s) d s$ is a martingale $\xrightarrow{L^{1}} X^{2}(t)-\int_{0}^{t} \sigma^{2}(s) d s$
(1) $Z_{n}(t)=\exp \left\{\int_{0}^{t} \sigma_{n} d B-\frac{1}{2} \int_{0}^{t} \sigma_{n}^{2} d s\right\}$ is a martingale so it suffices to show that $Z_{n}(t), n=1,2, \ldots$ is a uniformly integrable family.

Proof.

to show that $Z_{n}(t)=\exp \left\{\int_{0}^{t} \sigma_{n} d B-\frac{1}{2} \int_{0}^{t} \sigma_{n}^{2} d s\right\}, n=1,2, \ldots$ is a uniformly integrable family, it is enough to show that there is some fixed $C<\infty$ for which $E\left[\left(Z_{N}(t)\right)^{2}\right] \leq C$.

$$
\begin{aligned}
E\left[\left(Z_{N}(t)\right)^{2}\right] & =E\left[\exp \left\{2 \int_{0}^{t} \sigma_{n} d B-\int_{0}^{t} \sigma_{n}^{2} d s\right\}\right] \\
& \leq e^{C t} E\left[\exp \left\{2 \int_{0}^{t} \sigma_{n} d B-\frac{4}{2} \int_{0}^{t} \sigma_{n}^{2} d s\right\}\right] \\
& =e^{C t}
\end{aligned}
$$

A stochastic integral is an expression of the form

$$
X(t, \omega)=\int_{0}^{t} \sigma(s, \omega) d B(s)+\int_{0}^{t} b(s, \omega) d s+X_{0}
$$

where σ and b are progressively measurable with
$E\left[\int_{0}^{t} \sigma^{2}(s, \omega) d s\right]<\infty$ and $\int_{0}^{t}|b(s, \omega)| d s<\infty$ for all $t \geq 0$, and $X_{0} \in \mathcal{F}_{0}$ is the starting point
The stochastic differential

$$
d X=\sigma d B+b d t
$$

is shorthand for the same thing
For example the integral formula $\int_{0}^{t} B(s) d B(s)=\frac{1}{2}\left(B^{2}(t)-t\right)$ can be written in differential notation as

$$
d B^{2}=2 B d B+d t
$$

What happens if $B^{2}(t)$ is replaced by a more general function $f(B(t))$?

Itô's Lemma

Let $f(x)$ be twice continuously differentiable. Then

$$
d f(B)=f^{\prime}(B) d B+\frac{1}{2} f^{\prime \prime}(B) d t
$$

Proof

First of all we can assume without loss of generality that f, f^{\prime} and $f^{\prime \prime}$ are all uniformly bounded, for if we can establish the lemma in the uniformly bounded case, we can approximate f by f_{n} so that all the corresponding derivatives are bounded and converge to those of f uniformly on compact sets.

Let $s=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=t$. We have

$$
\begin{aligned}
f(B(t))-f(B(s))= & \sum_{j=0}^{n-1}\left[f\left(B\left(t_{j+1}\right)\right)-f\left(B\left(t_{j}\right)\right)\right] \\
= & \sum_{j=0}^{n-1} f^{\prime}\left(B\left(t_{j}\right)\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \\
& +\sum_{j=0}^{n-1} \frac{1}{2} f^{\prime \prime}\left(B\left(t_{j}\right)\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2} \\
& +\sum_{j=0}^{n-1} o\left(\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2}\right)
\end{aligned}
$$

Let the width of the partition go to zero. By definition of the stochastic integral

$$
\sum_{j=0}^{n-1} f^{\prime}\left(B\left(t_{j}\right)\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right) \rightarrow \int_{s}^{t} f^{\prime} d B
$$

By the same argument as for the computation of the quadratic variation,

$$
E\left[\left(\sum_{j=0}^{n-1} \frac{1}{2} f^{\prime \prime}\left(B\left(t_{j}\right)\right)\left[\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2}-\left(t_{j+1}-t_{j}\right)\right]\right)^{2}\right] \rightarrow 0 .
$$

Hence $\sum_{j=0}^{n-1} \frac{1}{2} f^{\prime \prime}\left(B\left(t_{j}\right)\right)\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)^{2} \rightarrow \frac{1}{2} \int_{s}^{t} f^{\prime \prime}(B(u)) d u$ in L^{2}. The same argument shows that the last term goes to zero in L^{2}. So we have proved that

$$
f\left(B(t)-f(B(s))=\int_{s}^{t} f^{\prime}(B(u)) d B(u)+\frac{1}{2} \int_{s}^{t} f^{\prime \prime}(B(u)) d u\right.
$$

which is Itô's formula.
(1) In differential notation Itô's formula reads

$$
d f(B)=f^{\prime}(B) d B+\frac{1}{2} f^{\prime \prime}(B) d t
$$

The Taylor series is $d f(B)=\sum_{n=1}^{\infty} \frac{1}{n!} f^{(n)}(B)(d B)^{n}$. In normal calculus we would have $(d B)^{n}=0$ if $n \geq 2$, but because of the finite quadratic variation of Brownian paths we have $(d B)^{2}=d t$, while still $(d B)^{n}=0$ if $n \geq 3$.
(2) If the function f depends on t as well as $B(t)$, the formula is

$$
d f(t, B(t))=\frac{\partial f}{\partial t}(t, B(t)) d t+\frac{\partial f}{\partial x}(t, B(t)) d B(t)+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(t, B(t)) d t .
$$

The proof is about the same as the special case above.
(3) If $B(t)$ is a d-dimensional Brownian motion and $f(t, x)$ is a function on $[0, \infty) \times \mathbf{R}^{d}$ which has one continuous derivative in t and two continuous derivatives in x, then the formula reads

$$
d f(t, B(t))=\frac{\partial f}{\partial t}(t, B(t)) d t+\nabla f\left((t, B(t)) \cdot d B(t)+\frac{1}{2} \Delta f(t, B(t)) d t .\right.
$$

