
Brownian motion in Rd

1 Bt = (B1
t , . . . , Bd

t ), Bi
t independent Brownian motions

2 Bt Markov with P(Bt ∈ A | Bs = x) =
∫

A
1

(2π(t−s))d/2 e−
|y−x|2
2(t−s) dy

3 Bt has stationary independent mean zero increments with
E [|Bt − Bs|2] = d(t − s)

4 eλ·Bt− 1
2 |λ|

2t is a martingale for any λ

Note that 1 does not depend on the basis: If B1
t , . . . , B2

t independent
and O is orthogonal, then the coordinates of OBt are independent
Brownian motions in fact

Theorem
Suppose X1, X2 independent and ∃θ 6= Nπ/2 such that

X1 cos θ + X2 sin θ, −X1 sin θ + X2 cos θ independent

Then X1, X2 are Gaussians (Maxwell)
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Dirichlet problem

Given a bounded open subset G ⊂ Rd and a continuous function
f : ∂G → R find a continuous function u : Ḡ → R such that{

∆u = 0 in G
u|∂G = f

∆u def
=

d∑
i=1

∂2u
∂x2

i
= 2d lim

r→0
r−2

(
1

|∂S(r , x)|

∫
∂S(r ,x)

udS − u(x)

)

Lemma
u harmonic in G ⇔ u satisfies the mean value property: for all
sufficiently small r > 0,

1
|∂S(r , x)|

∫
∂S(r ,x)

udS = u(x)
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Lemma
u harmonic in G ⇔ u satisfies the mean value property: for all
sufficiently small r > 0,

1
|∂S(r , x)|

∫
∂S(r ,x)

udS = u(x)

Proof.
Green’s identity

∫
G v∆udx =

∫
G u∆vdx +

∫
∂G v ∂u

∂n − u ∂v
∂n dS

G = {δ < x < r}, v =

{ log r−log |x |
log r−log δ d = 2
|x |2−d−r2−d

δ2−d−r2−d d > 2
let δ ↓ 0

() Stochastic Calculus February 15, 2007 3 / 1



Bt d-dimensional Brownian motion starting at x ∈ G

τG = inf{t ≥ 0 : B(t) 6∈ G}

u(x) = Ex [f (B(τG))]

”Theorem” If ∂G ”nice” then u solves the Dirichlet problem

Ex [f (B(τG))] =

∫
∂G

f (y)πG(x , dy), πG(x , Γ) = Px(B(τG) ∈ Γ), Γ ⊂ ∂G

Example. G = B(x , r), πG(x , Γ) = |Γ|
|∂S(x ,r)| , Γ ⊂ S(x , r)

Brownian motion is invariant under rotations
∴ πG(x , ·) is invariant under rotations
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Proposition

G bounded open ⊂ Rd , f bounded measurable on ∂G. Then
u(x) = Ex [f (B(τG))] is harmonic in G.

Proof.
B = B(x , r) ⊂ G τB ≤ τG

Strong Markov property: u(B(τS)) = Ex [f (B(τG)) | FτS ]

u(x) = Ex [f (B(τG))] = Ex [Ex [f (B(τG)) | FτS ]]

= Ex [u(B(τS))]

=

∫
∂S

u(y)πS(x , dy)

=
1
|∂S|

∫
∂S

u(y)dS

So u satisfies the mean value property in G.
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a ∈ ∂G

To complete the proof that u solves the Dirichlet problem we need

lim
x→a, x∈G

Ex [f (B(τG))] = f (a) It is not always true!

Proposition
If lim x→a

x∈G
Px [τG > ε] = 0, ∀ε > 0 then for any bdd mble function

f : ∂G → R which is continuous at a, lim x→a
x∈G

Ex [f (B(τG))] = f (a)

Proof.
Need: limx→a, x∈G Px (|B(τG)− x | < δ) = 1

Px(|B(τG)− x | < δ) ≥ Px( sup
0≤t≤ε

|B(t)− x | < δ, τG ≤ ε)

≥ Px( sup
0≤t≤ε

|B(t)− x | < δ)− Px(τG ≤ ε)

→ 1 as x → a, x ∈ G then ε ↓ 0
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Proposition
a ∈ ∂G is regular if Pa(σG = 0) = 1 σG = inf{t > 0 : B(t) 6∈ G}
a regular ⇔ limx→a, x∈G Ex [f (BτG)] = f (a) ∀f bdd mble, cont at a

Proof of ⇒
Enough to prove Px(σG < ε) lower semi-continuous in x
Then lim sup x→a

x∈G
Px(σG < ε) ≥ Pa(σG < ε) = 1 and σG ≥ τG

But
∫

p(0, x , δ, y)Py (∃s ∈ (0, ε− δ), B(s) 6∈ G) continuous
and ↑ Px(σG < ε) as δ ↓ 0

Examples
1 If ∂G is a smooth manifold near a then a is regular by LIL
2 If ∃ cone C of height h > 0 and vertex at a such that

C − {a} ⊂ ḠC then a is a regular (exterior cone condition)
3 d ≤ 2 always,d ≥ 3 ∃counterexamples
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Application to recurrence/transience of Brownian
motion

G = {y ∈ Rd : δ < |y | < R} f =

{
0 |y | = R
1 |y | = δ

u(x) = Ex [f (B(τG))] = Px(τδ < τR) =

{ log R−log |x |
log R−log δ d = 2
|x |2−d−R2−d

δ2−d−R2−d d > 2

Theorem In d ≥ 2, Brownian motion does not visit a point

Proof.

Px(τ0 < τR) = lim
δ↓0

Px(τδ < τR) = lim
δ↓0

log R − log |x |
log R − log δ

= 0

() Stochastic Calculus February 15, 2007 8 / 1



Theorem In d = 2, Brownian motion is recurrent, ie. comes
arbitrarily close to any point arbitrarily many times

Proof.

Px(τδ < ∞) = lim
R↑∞

Px(τδ < τR) = lim
R↑∞

log R − log |x |
log R − log δ

= 1

Theorem In d ≥ 3, Brownian motion wanders off to infinity

Proof.

Px(τδ < ∞) = limR↑∞
|x |2−d−R2−d

δ2−d−R2−d =
(
|x |
δ

)2−d
if |x | > δ

Px(hit |y | = δ after time t) =
∫ e−

|x−y|2
2t

(2πt)d/2 Py (τδ < ∞)dy → 0 as t →∞
Px(lim inft→∞ |B(t)| > δ) = 1
δ ↑ ∞ lim inft→∞ |B(t)| = ∞ a.s.
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∫ t
0 B(s)dB(s)

Based on experience with Riemann integrals

∫ t

0
B(s)dB(s) = lim

n→∞

b2ntc−1∑
j=0

B(tn
j )

(
B(

j + 1
2n )− B(

j
2n )

)

for some choice of tn
j ∈ [ j

2n , j+1
2n ]. Lets try two choices, the right and left

endpoints.

Lt = lim
n→∞

b2ntc−1∑
j=0

B(
j

2n )

(
B(

j + 1
2n )− B(

j
2n )

)

Rt = lim
n→∞

b2ntc−1∑
j=0

B(
j + 1
2n )

(
B(

j + 1
2n )− B(

j
2n )

)
.
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Lt = lim
n→∞

b2ntc−1∑
j=0

B(
j

2n )

(
B(

j + 1
2n )− B(

j
2n )

)

Rt = lim
n→∞

b2ntc−1∑
j=0

B(
j + 1
2n )

(
B(

j + 1
2n )− B(

j
2n )

)
.

Rt − Lt = t

Rt + Lt = lim
n→∞

b2ntc−1∑
j=0

(B2(
j + 1
2n )− B2(

j
2n )) = B2(t).

Lt =
1
2
([Lt + Rt ]− [Rt − Lt ]) =

1
2
(B2(t)− t) Rt =

1
2
(B2(t) + t)

The choice of tn
j matters! This is why Riemann told you to only

integrate functions of bounded variation.
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Which one is correct?∫ t
0 BdB = 1

2(B2(t)− t) or 1
2(B2(t) + t) ?

Or something else??

eg. midpoint rule gives
∫ t

0 BdB = 1
2B2(t) which looks reasonable

Not really a mathematical question. A modeling question

Of all choices two have some special properties:

Lt =
∫ t

0 B(s)dB(s) = 1
2(B2(t)− t) is a martingale : Itô integral

Midpoint rule
∫ t

0 B(s) ◦ dB(s) = 1
2B2(t) looks like ordinary calculus :

Stratonovich integral

We will always use the Itô integral and think of Stratonovich as a
simple transformation of it which is sometimes useful in applications

(eg. Math finance: Itô, Math biology: Sometimes Stratonovich)
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Definition: Progressively measurable
σ(s, ω) is called progressively measurable if

1 i. σ(s, ω) is B[0,∞)×F measurable;
2 ii. For all t ≥ 0, the map [0, t ]× Ω → R given by σ(s, ω) is
B[0, t ]×Ft measurable.

B[0, t ] denotes the Borel σ-algebra on [0, t ].
Informally, σ(s, ω) is nonanticipating= uses information about ω
contained in Fs.

Definition: Simple Functions
σ(s, ω) is called simple if there exists a partition 0 ≤ s0 < s1 < · · · of
[0,∞) and bounded random variables σj(ω) ∈ Fsj such that
σ(s, ω) = σj(ω) for sj ≤ s < sj+1.
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Definition: Stochastic Integral for Simple Functions
Given such a σ(s, ω) = σj(ω) for sj ≤ s < sj+1, σj(ω) ∈ Fsj define

∫ t

0
σ(s, ω)dB(s) =

J(t)−1∑
j=0

σj(ω)(B(sj+1)−B(sj))+σJ(t)(ω)(B(t)−B(sJ(t)))

where sJ(t) < t ≤ sJ(t)+1.

Basic properties
1
∫ t

0(c1σ1 + c2σ2)dB = c1
∫ t

0 σ1dB + c2
∫ t

0 σ2dB.
2
∫ t

0 σdB is a continuous martingale.
3 E [(

∫ t
0 σ(s, ω)dB(s))2] = E [

∫ t
0 σ2(s, ω)ds].

4 Z (t) = exp{
∫ t

0 σdB − 1
2

∫ t
0 σ2ds} is a continuous martingale.
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Lemma
Suppose that σ is progressively measurable and that for each t ≥ 0,

E [

∫ t

0
σ2(s, ω)ds] < ∞.

Then there is a sequence σn of simple progressively measurable
functions such that

E [

∫ t

0
(σ(s, ω)− σn(s, ω))2ds] → 0.

Proof
We can assume that σ is bounded For if σN = σ for |σ| ≤ N and 0
otherwise then σN → σ and |σN − σ|2 ≤ 4|σ|2 so by the dominated
convergence theorem E [

∫ t
0(σ − σN)2ds] → 0.
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Proof.
Furthermore we can assume that σ is continuous in s
for if σ is bounded then σh = h−1 ∫ t

t−h σds are continuous progressively
measurable and converge to σ as h → 0. By the bounded convergence
theorem

E [

∫ t

0
(σ − σh)

2ds] → 0

For σ continuous bounded and progressively measurable let

σn(s, ω) = σ(
bnsc

n
, ω)

These are progressively measurable, bounded and simple functions
converging to σ and again by the bounded convergence theorem,

E [

∫ t

0
(σ − σn)

2ds] → 0
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Theorem (Definition of the Itô Integral)
Let σ(s, ω) be progressively measurable and for each t ≥ 0,
E [
∫ t

0 σ2ds] < ∞. Let σn be simple functions with E [
∫ t

0(σn − σ)2ds] → 0
and set

Xn(t , ω) =

∫ t

0
σn(s, ω)dB(s).

Then
X (t , ω) = lim

n→∞
Xn(t , ω)

exists uniformly in probability, i.e. for each T > 0 and ε > 0,

lim
n→∞

P( sup
0≤t≤T

|XN(t , ω)− X (t , ω)| ≥ ε) = 0.

Furthermore the limit is independent of the choice of approximating
sequence σn → σ. The limit X (t , ω) is the Itô integral

X (t) =

∫ t

0
σ(s)dB(s)
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Proof.

Xn(t)− Xm(t) =
∫ t

0(σn − σm)dB is a continuous martingale so by
Doob’s inequality

P( sup
0≤t≤T

|Xn(t)− Xm(t)| ≥ ε) ≤ ε−2E [(Xn − Xm)2(T )]

= ε−2E [

∫ T

0
(σn − σm)2ds]

So Xn − Xm is uniformly Cauchy in probability and therefore there
exists a progressively measurable X with

P( sup
0≤t≤T

|X (t , ω)− Xn(t , ω)| ≥ ε)
n→∞→ 0 ε > 0

If σ′n
L2
→ σ and X ′

n =
∫ t

0 σ′ndB, P(sup0≤t≤T |Xn − X ′
n| ≥ ε) → 0 so that Xn

and X ′
n have the same limit.
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Basic properties of the Itô Integral
1
∫ t

0(c1σ1 + c2σ2)dB = c1
∫ t

0 σ1dB + c2
∫ t

0 σ2dB.
2
∫ t

0 σdB is a continuous martingale.
3 E [(

∫ t
0 σ(s, ω)dB(s))2] = E [

∫ t
0 σ2(s, ω)ds].

4 If |σ| ≤ C then Z (t) = exp{
∫ t

0 σdB − 1
2

∫ t
0 σ2ds} is a continuous

martingale

proof
1 By construction
2 Continuity follows from the construction. To prove the limit is a

martingale we have E [Xn(t) | Fs] = Xn(s) and Xn → X in L2,
therefore in L1 as well. The L1 limit of a martingale is a martingale.

3 X 2
n (t)−

∫ t
0 σ2

n(s)ds is a martingale L1
→ X 2(t)−

∫ t
0 σ2(s)ds

4 Zn(t) = exp{
∫ t

0 σndB − 1
2

∫ t
0 σ2

nds} is a martingale so it suffices to
show that Zn(t), n = 1, 2, . . . is a uniformly integrable family.
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Proof.

to show that Zn(t) = exp{
∫ t

0 σndB − 1
2

∫ t
0 σ2

nds}, n = 1, 2, . . . is a
uniformly integrable family, it is enough to show that there is some
fixed C < ∞ for which E [(ZN(t))2] ≤ C.

E [(ZN(t))2] = E [exp{2
∫ t

0
σndB −

∫ t

0
σ2

nds}]

≤ eCtE [exp{2
∫ t

0
σndB − 4

2

∫ t

0
σ2

nds}]

= eCt
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A stochastic integral is an expression of the form

X (t , ω) =

∫ t

0
σ(s, ω)dB(s) +

∫ t

0
b(s, ω)ds + X0

where σ and b are progressively measurable with
E [
∫ t

0 σ2(s, ω)ds] < ∞ and
∫ t

0 |b(s, ω)|ds < ∞ for all t ≥ 0, and X0 ∈ F0
is the starting point

The stochastic differential

dX = σdB + bdt

is shorthand for the same thing

For example the integral formula
∫ t

0 B(s)dB(s) = 1
2(B2(t)− t) can be

written in differential notation as

dB2 = 2BdB + dt
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What happens if B2(t) is replaced by a more general function f (B(t)) ?

Itô’s Lemma
Let f (x) be twice continuously differentiable. Then

df (B) = f ′(B)dB +
1
2

f ′′(B)dt

Proof
First of all we can assume without loss of generality that f , f ′ and f ′′

are all uniformly bounded, for if we can establish the lemma in the
uniformly bounded case, we can approximate f by fn so that all the
corresponding derivatives are bounded and converge to those of f
uniformly on compact sets.
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Let s = t0 < t1 < t2 < · · · < tn = t . We have

f (B(t))− f (B(s)) =
n−1∑
j=0

[f (B(tj+1))− f (B(tj))]

=
n−1∑
j=0

f ′(B(tj))(B(tj+1)− B(tj))

+
n−1∑
j=0

1
2

f ′′(B(tj))(B(tj+1)− B(tj))2

+
n−1∑
j=0

o
(
(B(tj+1)− B(tj))2

)
.

Let the width of the partition go to zero. By definition of the stochastic
integral

n−1∑
j=0

f ′(B(tj))(B(tj+1)− B(tj)) →
∫ t

s
f ′dB.
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By the same argument as for the computation of the quadratic
variation,

E


n−1∑

j=0

1
2

f ′′(B(tj))
[
(B(tj+1)− B(tj))2 − (tj+1 − tj)

]2
→ 0.

Hence
∑n−1

j=0
1
2 f ′′(B(tj))(B(tj+1)− B(tj))2 → 1

2

∫ t
s f ′′(B(u))du in L2. The

same argument shows that the last term goes to zero in L2. So we
have proved that

f (B(t)− f (B(s)) =

∫ t

s
f ′(B(u))dB(u) +

1
2

∫ t

s
f ′′(B(u))du

which is Itô’s formula.
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1 In differential notation Itô’s formula reads

df (B) = f ′(B)dB +
1
2

f ′′(B)dt .

The Taylor series is df (B) =
∑∞

n=1
1
n! f

(n)(B)(dB)n. In normal
calculus we would have (dB)n = 0 if n ≥ 2, but because of the
finite quadratic variation of Brownian paths we have (dB)2 = dt ,
while still (dB)n = 0 if n ≥ 3.

2 If the function f depends on t as well as B(t), the formula is

df (t , B(t)) =
∂f
∂t

(t , B(t))dt +
∂f
∂x

(t , B(t))dB(t) +
1
2

∂2f
∂x2 (t , B(t))dt .

The proof is about the same as the special case above.
3 If B(t) is a d-dimensional Brownian motion and f (t , x) is a function

on [0,∞)× Rd which has one continuous derivative in t and two
continuous derivatives in x , then the formula reads

df (t , B(t)) =
∂f
∂t

(t , B(t))dt +∇f ((t , B(t)) · dB(t) +
1
2
∆f (t , B(t))dt .
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