Conditional Expectation

Probability space (Ω, \mathcal{F}, P) Random variable $X \in L^1$ Sub σ -field $\mathcal{G} \subset \mathcal{F}$

Definition

The conditional expectation of *X* given G is a random variable E[X|G] satisfying

•
$$E[X|\mathcal{G}] \in \mathcal{G}$$

$$2 \quad \int_{A} X dP = \int_{A} E[X|\mathcal{G}] dP \text{ for all } A \in \mathcal{G}$$

 $X \ge 0, Q(A) = \int_A X dP, A \in \mathcal{G}. Q$ measure on $(\Omega, \mathcal{G}, P), Q \ll P$ Radon-Nikodym theorem: $\exists \frac{dQ}{dP} \in L^1(\Omega, \mathcal{G}, P)$ s.t. $Q(A) = \int_A \frac{dQ}{dP} dP$ $E[X|\mathcal{G}] = \frac{dQ}{dP}$ if $X = X_+ - X_-$ define $E[X|\mathcal{G}] = E[X_+|\mathcal{G}] - E[X_-|\mathcal{G}]$

Examples.

- $\begin{array}{l} \textcircled{0} \quad \Omega = [0,1), \ \mathcal{F} = & \text{Borel sets}, \ P = & \text{Lebesgue}, \ \mathcal{F}_n = & \text{Dyadic level n}, \\ E[X|\mathcal{F}_n](\omega) = & \textit{Av}_{[\frac{i}{2^n},\frac{i+1}{2^n})}X, \ \omega \in [\frac{i}{2^n},\frac{i+1}{2^n}) \end{array}$
- A_1, A_2, \ldots partition of Ω . \mathcal{G} is σ -field generated by this partition $E[X|\mathcal{G}] = \frac{1}{P(A_i)} \int_{A_i} X dP, \omega \in A_i$

In particular if
$$A_1 = A$$
, $A_2 = A^C$, $X = 1_B$ then $E[1_B|\mathcal{G}] = P(B|A) = \frac{P(B\cap A)}{P(A)}$ on A

$$P((X, Y) \in A) = \int_A f(x, y) dx dy$$

$$E[g(X)|Y] = \frac{\int g(x)f(x, y) dx}{\int f(x, y) dx} = \int g(x) P(X \in dx | Y = y)$$

$$X \in G \Rightarrow E[XY|\mathcal{G}] = XE[Y|\mathcal{G}]$$

• X indep of $\mathcal{G} \Leftrightarrow E[X|\mathcal{G}] = E[X]$

Martingales: Discrete time

Definition.

An non-decreasing family of sub- σ -fields $\mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{F}$ is called a filtration

Definition

 M_n a sequence of random variables in $L^1(\Omega, \mathcal{F}, P)$. If

$$E[M_{n+1} \mid \mathcal{F}_n] = M_n$$

then M_n is a *martingale* with respect to the filtration \mathcal{F}_n submartingale: $E[M_{n+1} \mid \mathcal{F}_n] \geq M_n$ supermartingale: $E[M_{n+1} | \mathcal{F}_n] < M_n$ Example, $S_n = X_1 + \cdots + X_n$, X_i iid $E[X_i] = 0 \Rightarrow S_n$ martingale. $E[X_i] \ge 0 \Rightarrow S_n$ submartingale. $E[X_i] < 0 \Rightarrow S_n$ supermartingale

Lemma

Let $\phi : \mathbb{R} \to \mathbb{R}$ be convex and X_n a martingale with respect to \mathcal{F}_n . Then $\phi(X_n)$ is a submartingale with respect to \mathcal{F}_n .

Proof.

By Jensen's inequality for conditional probability

 $E[\phi(X_n) \mid \mathcal{F}_n] \ge \phi(E[X_n \mid \mathcal{F}_n]) = \phi(X_n).$

Example. $S_n = X_1 + \dots + X_n$, X_i iid, $E[X_i] = 0$, $Var(X_i) = \sigma^2 < \infty$ S_n martingale. S_n^2 submartingale. $S_n^2 - \sigma^2 n$ martingale. $E[S_{n+1}^2 - \sigma^2(n+1)|\mathcal{F}_n] = E[S_n^2 + 2S_nX_{n+1} + X_{n+1}^2 - \sigma^2(n+1)|\mathcal{F}_n] =$ $S_n^2 + \sigma^2 - \sigma^2(n+1)$

Doob's inequality (Discrete time)

Let X_n be a submartingale with respect to \mathcal{F}_n . Then for any $\lambda > 0$ and n = 1, 2, ...,

$$P\left(\max_{1\leq k\leq n}X_k\geq\lambda\right)\leq \frac{E[X_n^+]}{\lambda}.$$

Proof.

$$A_i = \left\{ X_i \ge \lambda, \max_{0 \le k \le i-1} X_k < \lambda \right\} \text{ disjt } \cup_{i=1}^n A_i = \{\max_{1 \le i \le n} X_i \ge \lambda\}$$

$$P\left(\max_{1\leq i\leq n} X_{i} \geq \lambda\right) = \sum_{i=1}^{n} P(A_{i}) \leq \sum_{i=1}^{n} \frac{1}{\lambda} \int_{A_{i}} X_{i} dP \qquad \text{Tchebyshev}$$
$$\leq \sum_{i=1}^{n} \frac{1}{\lambda} \int_{A_{i}} E[X_{n} \mid \mathcal{F}_{i}] dP = \sum_{i=1}^{n} \frac{1}{\lambda} \int_{A_{i}} X_{n} dP$$
$$= \frac{1}{\lambda} \int_{\{\max_{1\leq i\leq n} X_{i}\geq\lambda\}} X_{n} dP$$

Example

B'(t) is formally White noise so formally $B'(t) = \sum_{n} Z_{n} e^{2\pi i n t}$, Z_{n} iid $\mathcal{N}(0, 1)$ so we expect $B(t) = \sum_{n} Z_{n} \frac{e^{2\pi i n t} - 1}{2\pi i n}$ Does it converge?

Kolmogorov Three Series Theorem

 X_1, X_2, \ldots independent. $\sum_{n=1}^{\infty} X_n$ converges if and only if $(1) \sum_{n=1}^{\infty} P(|X_n| > M) < \infty; (2) \sum_{n=1}^{\infty} E[X_n^M] < \infty; (3) \sum_{n=1}^{\infty} Var(X_n^M) < \infty$, for all M > 0 where $X_n^M = X_n \mathbf{1}_{|X_n| \le M}$.

Proof of "if"

Let
$$\bar{X}_n^M = X_n^M - E[X_n^M]$$
. By Doob's inequality,

$$P(\max_{N \le m \le R} | \sum_{n=N+1}^{m} \bar{X}_{n}^{M} | \ge \epsilon) \le \epsilon^{-2} \sum_{n=N+1}^{R} Var(X_{n}^{M})$$

By (3) rhs \downarrow 0 as $N \uparrow \infty$ uniformly in R, so $\sum_{n=1}^{N} \bar{X}_{n}^{M}$ is Cauchy, hence convergent. Now (2) $\Rightarrow \sum_{n=1}^{N} X_{n}^{M}$ convergent (1)+Borel-Cantelli $\Rightarrow X_{n}^{M} = X_{n}$ except for finitely many n. Q.E.D.

Definition

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{F}_n , n = 0, 1, 2, ... a filtration A random variable τ taking values in $\{0, 1, 2, ...\}$ is called a *stopping time* if for each n = 0, 1, 2, ...,

$$\{\omega \in \Omega : \tau(\omega) \leq n\} \in \mathcal{F}_n.$$

Example

Let X_n be a random walk starting at 0. Let $\tau = \min\{n \ge 0 : X_n \ge a\}$ be the *first passage time* of level *a*. τ is a stopping time.

Let $\sigma = \max\{n \ge 0 : X_n \le a\}$, the *last passage time*. σ is not a stopping time.

 $\mathcal{F}_{\tau} = \{ \boldsymbol{A} \in \mathcal{F} : \boldsymbol{A} \cap \{ \tau \leq \boldsymbol{n} \} \in \mathcal{F}_{\boldsymbol{n}}, \ \boldsymbol{n} \geq \boldsymbol{0} \}$

is a σ -field representing the information up to the stopping time au

Optional stopping

 M_n martingale wrt filtration \mathcal{F}_n . $\tau \ge \sigma$ bounded stopping times

$$E[X_{\tau} \mid \mathcal{F}_{\sigma}] = X_{\tau}$$

bounded means $\tau \leq B$ Otherwise it is **FALSE**

Proof.

Need:
$$\int_{A} X_{\tau} dP = \int_{A} X_{\sigma} dP$$
, $\forall A \in \mathcal{F}_{\sigma}$
 $\int_{A \cap \{\sigma = \ell\}} X_{\sigma} dP = \int_{A \cap \{\sigma = \ell\}} X_{B} dP$ since $A \cap \{\sigma = \ell\} \in \mathcal{F}_{\sigma}$
so $\int_{A} X_{\sigma} dP = \int_{A} X_{B} dP$ same for X_{τ} since $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$

Example

 $\begin{array}{l} X_1, X_2, \dots \text{ iid } P(X_i = 1) = P(X_i = -1) = 1/2 \\ S_n = X_1 + \dots + X_n \text{ Random walk} \\ \tau_{\pm a} = \min\{n : |S_n| = a\} \quad E[\tau_{\pm a}] =? \\ S_n^2 - n \text{ martingale} \\ \tau_{\pm a}^B = \min\{\tau_{\pm a}, B\} \text{ bounded stopping time} \\ \text{Optional stopping: } E[S_{\tau_{\pm a}}^2 - \tau_{\pm a}^B] = 0 \\ \lim_{B\uparrow\infty} E[\tau_{\pm a}^B] = E[\tau_{\pm a}] \text{ by monotone convergence theorem} \\ \lim_{B\uparrow\infty} E[S_{\tau_{\pm a}}^2] = a^2 \text{ by bounded convergence theorem} \\ E[\tau_{\pm a}] = a^2 \end{array}$

Counterexample

Try same for $\tau_a = \min\{n : S_n = a\}$ $\lim_{B\uparrow\infty} E[S^2_{\tau^B_a}] = E[\tau_a]$ but $\lim_{B\uparrow\infty} E[S^2_{\tau^B_a}] = \infty \neq E[S^2_{\tau_a}] = a^2$

Martingales: Continuous time

Definition

Let (Ω, \mathcal{F}, P) be a probability space $\mathcal{F}_t, t \ge 0$ a *filtration* (= non-decreasing family of sub- σ -fields of \mathcal{F}) $M_t, t \ge 0 \in L^1$ is a *martingale* with respect to $\mathcal{F}_t, t \ge 0$ if whenever s < t,

$$E[M_t \mid \mathcal{F}_s] = M_s.$$

 $\textit{submartingale} \text{ if } \geq \quad \textit{supermartingale} \text{ if } \leq$

Examples

- B_t is a martingale wrt $\mathcal{F}_t = \sigma(B_s, s \leq t)$
- B_t^2 is a submartingale
- $B_t^2 t$ is a martingale
- $e^{\lambda B_t rac{1}{2}\lambda^2 t}$ is a martingale for any $\lambda \in \mathbb{R}$

Martingale characterization of Brownian motion

If $e^{\lambda B_t - \frac{1}{2}\lambda^2 t}$ is a martingale wrt $\mathcal{F}_t = \sigma(B_s, s \leq t)$ for any $\lambda \in \mathbb{R}$ then $B_t, t \geq 0$ is Brownian motion

Proof.

$$E[e^{\lambda(B_t-B_s)}|\mathcal{F}_s]=e^{\frac{1}{2}\lambda^2(t-s)}$$

so $B_t - B_s$ independent of \mathcal{F}_s and $\mathcal{N}(0, t - s)$

Doob's inequality

If X_t is a submartingale with respect to \mathcal{F}_t and the paths of X_t are right continuous with probability one, then

$$P(\sup_{0 \le t \le T} X_t \ge \lambda) \le \frac{E[X_T^+]}{\lambda}$$

Proof.

Let
$$0 \le t_0 < t_1 < \cdots$$
 $\tilde{X}_n = X_{t_n}$ is a martingale wrt $\tilde{\mathcal{F}}_n = \mathcal{F}_{t_n}$

$$P(\sup_{0 \leq t_i \leq T} X_{t_i} \geq \lambda) \leq rac{E[X_T^+]}{\lambda}$$

By right continuity lhs $\uparrow P(\sup_{0 \le t \le T} X_t \ge \lambda)$ as mesh $\downarrow 0$

Optional stopping

 X_t , $t \ge 0$ be a right continuous martingale with respect to \mathcal{F}_t , $t \ge 0$ and $\sigma \le \tau$ bounded stopping times

$$E[X_{\tau} \mid \mathcal{F}_{\sigma}] = X_{\sigma}$$

Proof.

$$\begin{split} \sigma_n &= 2^{-n} (\lfloor 2^n \sigma \rfloor + 1) \\ \tau_n &= 2^{-n} (\lfloor 2^n \tau \rfloor + 1) \\ \sigma_n &\leq \tau_n \leq B \\ E[X_{\tau_n} \mid \mathcal{F}_{\sigma_n}] &= X_{\sigma_n} \quad \text{ie } \int_A X_{\tau_n} dP = \int_A X_{\sigma_n} dP, \ A \in \mathcal{F}_{\sigma}, \text{since } \sigma \leq \sigma_n \\ \text{By right continuity } X_{\tau_n} &\to X_{\tau} \text{ and } X_{\sigma_n} \to X_{\sigma} \\ \text{Recall } \{X_n\}_{n=1,2,\dots} \text{ is uniformly integrable if } \end{split}$$

$$\lim_{M\uparrow\infty}\sup_n\int_{|X_n|\ge M}|X_n|dP=0$$

and if $X_n \stackrel{a.s.}{\to} X$ then $\{X_n\}_{n=1,2,\dots}$ uniformly integrable $\Leftrightarrow X_n \stackrel{L^1}{\to} X$

 X_{σ_n} , n = 1, 2, ... and X_{τ_n} , n = 1, 2, ... are backwards martingales with respect to \mathcal{F}_n , n = 1, 2, ..., i.e. $E[X_{\sigma_{n-1}} | \mathcal{F}_{\sigma_n}] = X_{\sigma_n}$

Lemma

A backwards martingale is uniformly integrable

Proof.

$$\begin{split} E[X_m \mid \mathcal{F}_n] &= X_n \text{ whenever } m \leq n \quad \text{ so } \quad |X_n| \leq E[|X_0| \mid \mathcal{F}_n] \\ \text{ so } \\ \int_{\{|X_n| > \ell\}} |X_n| dP \leq \int_{\{|X_n| > \ell\}} |X_0| dP = \int \mathbf{1}_{\{|X_n| > \ell\}} |X_0| dP \\ P(|X_n| > \ell) \leq \frac{E[|X_n|]}{\ell} \leq \frac{E[|X_0|]}{\ell} \\ \text{ so } \mathbf{1}_{\{|X_n| > \ell\}} |X_0| \stackrel{a.s.}{\to} 0 \\ \int_{\{|X_n| > \ell\}} |X_0| dP \to 0 \text{ by dominated convergence theorem} \end{split}$$