Conditional Expectation

Probability space (Ω, \mathcal{F}, P)
Random variable $X \in L^{1}$
Sub σ-field $\mathcal{G} \subset \mathcal{F}$

Definition

The conditional expectation of X given \mathcal{G} is a random variable $E[X \mid \mathcal{G}]$ satisfying
(1) $E[X \mid \mathcal{G}] \in \mathcal{G}$
(2) $\int_{A} X d P=\int_{A} E[X \mid \mathcal{G}] d P$ for all $A \in \mathcal{G}$
$X \geq 0, Q(A)=\int_{A} X d P, A \in \mathcal{G} . Q$ measure on $(\Omega, \mathcal{G}, P), Q \ll P$ Radon-Nikodym theorem: $\exists \frac{d Q}{d P} \in L^{1}(\Omega, \mathcal{G}, P)$ s.t. $Q(A)=\int_{A} \frac{d Q}{d P} d P$
$E[X \mid \mathcal{G}]=\frac{d Q}{d P}$
if $X=X_{+}-X_{-}$define $E[X \mid \mathcal{G}]=E\left[X_{+} \mid \mathcal{G}\right]-E\left[X_{-} \mid \mathcal{G}\right]$

Examples.

(1) $\mathcal{G}=\{\emptyset, \Omega\}, E[X \mid \mathcal{G}]=E[X]$
(2) $\mathcal{G}=\mathcal{F}, E[X \mid \mathcal{G}]=X$
(3) $\Omega=[0,1), \mathcal{F}=$ Borel sets, $P=$ Lebesgue, $\mathcal{F}_{n}=$ Dyadic level n , $E\left[X \mid \mathcal{F}_{n}\right](\omega)=A v_{\left[2^{n}, \frac{i+1}{2^{n}}\right)} X, \omega \in\left[\frac{i}{2^{n}}, \frac{i+1}{2^{n}}\right)$
(9) A_{1}, A_{2}, \ldots partition of Ω. \mathcal{G} is σ-field generated by this partition $E[X \mid \mathcal{G}]=\frac{1}{P\left(A_{i}\right)} \int_{A_{i}} X d P, \omega \in A_{i}$
In particular if $A_{1}=A, A_{2}=A^{C}, X=1_{B}$ then
$E\left[1_{B} \mid \mathcal{G}\right]=P(B \mid A)=\frac{P(B \cap A)}{P(A)}$ on A
(0) $P((X, Y) \in A)=\int_{A} f(x, y) d x d y$
$E[g(X) \mid Y]=\frac{\int g(x) f(x, y) d x}{\int f(x, y) d x}=\int g(x) P(X \in d x \mid Y=y)$
(0) $X \in G \Rightarrow E[X Y \mid \mathcal{G}]=X E[Y \mid \mathcal{G}]$
(1) X indep of $\mathcal{G} \Leftrightarrow E[X \mid \mathcal{G}]=E[X]$

Martingales: Discrete time

Definition.

An non-decreasing family of sub- σ-fields $\mathcal{F}_{n} \subset \mathcal{F}_{n+1} \subset \mathcal{F}$ is called a filtration

Definition

M_{n} a sequence of random variables in $L^{1}(\Omega, \mathcal{F}, P)$. If

$$
E\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}
$$

then M_{n} is a martingale with respect to the filtration \mathcal{F}_{n}
submartingale: $E\left[M_{n+1} \mid \mathcal{F}_{n}\right] \geq M_{n}$
supermartingale: $E\left[M_{n+1} \mid \mathcal{F}_{n}\right] \leq M_{n}$
Example. $S_{n}=X_{1}+\cdots+X_{n}, X_{i}$ iid
$E\left[X_{i}\right]=0 \Rightarrow S_{n}$ martingale. $E\left[X_{i}\right] \geq 0 \Rightarrow S_{n}$ submartingale.
$E\left[X_{i}\right] \leq 0 \Rightarrow S_{n}$ supermartingale

Lemma

Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be convex and X_{n} a martingale with respect to \mathcal{F}_{n}. Then $\phi\left(X_{n}\right)$ is a submartingale with respect to \mathcal{F}_{n}.

Proof.

By Jensen's inequality for conditional probability

$$
E\left[\phi\left(X_{n}\right) \mid \mathcal{F}_{n}\right] \geq \phi\left(E\left[X_{n} \mid \mathcal{F}_{n}\right]\right)=\phi\left(X_{n}\right) .
$$

Example. $S_{n}=X_{1}+\cdots+X_{n}, X_{i}$ iid, $E\left[X_{i}\right]=0, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$ S_{n} martingale. S_{n}^{2} submartingale. $S_{n}^{2}-\sigma^{2} n$ martingale.
$E\left[S_{n+1}^{2}-\sigma^{2}(n+1) \mid \mathcal{F}_{n}\right]=E\left[S_{n}^{2}+2 S_{n} X_{n+1}+X_{n+1}^{2}-\sigma^{2}(n+1) \mid \mathcal{F}_{n}\right]=$ $S_{n}^{2}+\sigma^{2}-\sigma^{2}(n+1)$

Doob's inequality (Discrete time)

Let X_{n} be a submartingale with respect to \mathcal{F}_{n}. Then for any $\lambda>0$ and $n=1,2, \ldots$,

$$
P\left(\max _{1 \leq k \leq n} X_{k} \geq \lambda\right) \leq \frac{E\left[X_{n}^{+}\right]}{\lambda} .
$$

Proof.

$A_{i}=\left\{X_{i} \geq \lambda, \max _{0 \leq k \leq i-1} X_{k}<\lambda\right\}$ disjt $\cup_{i=1}^{n} A_{i}=\left\{\max _{1 \leq i \leq n} X_{i} \geq \lambda\right\}$

$$
\begin{aligned}
& P\left(\max _{1 \leq i \leq n} X_{i} \geq \lambda\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \leq \sum_{i=1}^{n} \frac{1}{\lambda} \int_{A_{i}} X_{i} d P \quad \text { Tchebyshev } \\
& \leq \sum_{i=1}^{n} \frac{1}{\lambda} \int_{A_{i}} E\left[X_{n} \mid \mathcal{F}_{i}\right] d P=\sum_{i=1}^{n} \frac{1}{\lambda} \int_{A_{i}} X_{n} d P \\
& =\frac{1}{\lambda} \int_{\left\{\max _{1 \leq i \leq n} X_{i} \geq \lambda\right\}} X_{n} d P
\end{aligned}
$$

Example

$B^{\prime}(t)$ is formally White noise so formally $B^{\prime}(t)=\sum_{n} Z_{n} e^{2 \pi i n t}, Z_{n}$ iid $\mathcal{N}(0,1)$ so we expect $B(t)=\sum_{n} Z_{n} \frac{e^{2 \pi i n t}-1}{2 \pi i n}$ Does it converge?

Kolmogorov Three Series Theorem

X_{1}, X_{2}, \ldots independent. $\sum_{n=1}^{\infty} X_{n}$ converges if and only if
(1) $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>M\right)<\infty ;(2) \sum_{n=1}^{\infty} E\left[X_{n}^{M}\right]<\infty ;(3) \sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}^{M}\right)<$ ∞, for all $M>0$ where $X_{n}^{M}=X_{n} 1\left|X_{n}\right| \leq M$.

Proof of "if"

Let $\bar{X}_{n}^{M}=X_{n}^{M}-E\left[X_{n}^{M}\right]$. By Doob's inequality,

$$
P\left(\max _{N \leq m \leq R}\left|\sum_{n=N+1}^{m} \bar{X}_{n}^{M}\right| \geq \epsilon\right) \leq \epsilon^{-2} \sum_{n=N+1}^{R} \operatorname{Var}\left(X_{n}^{M}\right)
$$

By (3) rhs $\downarrow 0$ as $N \uparrow \infty$ uniformly in R, so $\sum_{n=1}^{N} \bar{X}_{n}^{M}$ is Cauchy, hence convergent. Now (2) $\Rightarrow \sum_{n=1}^{N} X_{n}^{M}$ convergent (1) + Borel-Cantelli $\Rightarrow X_{n}^{M}=X_{n}$ except for finitely many n. Q.E.D.

Definition

Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{F}_{n}, n=0,1,2, \ldots$ a filtration A random variable τ taking values in $\{0,1,2, \ldots\}$ is called a stopping time if for each $n=0,1,2, \ldots$,

$$
\{\omega \in \Omega: \tau(\omega) \leq n\} \in \mathcal{F}_{n} .
$$

Example

Let X_{n} be a random walk starting at 0 . Let $\tau=\min \left\{n \geq 0: X_{n} \geq a\right\}$ be the first passage time of level a. τ is a stopping time.
Let $\sigma=\max \left\{n \geq 0: X_{n} \leq a\right\}$, the last passage time. σ is not a stopping time.

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq n\} \in \mathcal{F}_{n}, n \geq 0\right\}
$$

is a σ-field representing the information up to the stopping time τ

Optional stopping
M_{n} martingale wrt filtration $\mathcal{F}_{n} . \quad \tau \geq \sigma$ bounded stopping times

$$
E\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right]=X_{\tau}
$$

bounded means $\tau \leq B$ Otherwise it is FALSE

Proof.

Need: $\int_{A} X_{\tau} d P=\int_{A} X_{\sigma} d P, \quad \forall A \in \mathcal{F}_{\sigma}$ $\int_{A \cap\{\sigma=\ell\}} X_{\sigma} d P=\int_{A \cap\{\sigma=\ell\}} X_{B} d P$ since $A \cap\{\sigma=\ell\} \in \mathcal{F}_{\ell}$ so $\int_{A} X_{\sigma} d P=\int_{A} X_{B} d P$ same for X_{τ} since $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$

Example

X_{1}, X_{2}, \ldots iid $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2$
$S_{n}=X_{1}+\cdots+X_{n}$ Random walk
$\tau_{ \pm a}=\min \left\{n:\left|S_{n}\right|=a\right\} \quad E\left[\tau_{ \pm a}\right]=$?
$S_{n}^{2}-n$ martingale
$\tau_{ \pm a}^{B}=\min \left\{\tau_{ \pm a}, B\right\}$ bounded stopping time
Optional stopping: $E\left[S_{\tau_{ \pm a}^{B}}^{2}-\tau_{ \pm a}^{B}\right]=0$
$\lim _{B \uparrow \infty} E\left[\tau_{ \pm a}^{B}\right]=E\left[\tau_{ \pm a}\right]$ by monotone convergence theorem $\lim _{B \uparrow \infty} E\left[S_{\tau_{ \pm a}^{2}}^{2}\right]=a^{2}$ by bounded convergence theorem
$E\left[\tau_{ \pm a}\right]=a^{2}$

Counterexample

Try same for $\tau_{a}=\min \left\{n: S_{n}=a\right\}$
$\lim _{B \uparrow \infty} E\left[S_{\tau_{a}^{B}}^{2}\right]=E\left[\tau_{a}\right]$
but $\lim _{B \uparrow \infty} E\left[S_{\tau_{a}^{B}}^{2}\right]=\infty \neq E\left[S_{\tau_{a}}^{2}\right]=a^{2}$

Martingales: Continuous time

Definition

Let (Ω, \mathcal{F}, P) be a probability space
$\mathcal{F}_{t}, t \geq 0$ a filtration ($=$ non-decreasing family of sub- σ-fields of \mathcal{F}) $M_{t}, t \geq 0 \in L^{1}$ is a martingale with respect to $\mathcal{F}_{t}, t \geq 0$ if whenever $s \leq t$,

$$
E\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}
$$

submartingale if \geq supermartingale if \leq

Examples

- B_{t} is a martingale wrt $\mathcal{F}_{t}=\sigma\left(B_{s}, s \leq t\right)$
- B_{t}^{2} is a submartingale
- $B_{t}^{2}-t$ is a martingale
- $e^{\lambda B_{t}-\frac{1}{2} \lambda^{2} t}$ is a martingale for any $\lambda \in \mathbb{R}$

Martingale characterization of Brownian motion

If $e^{\lambda B_{t}-\frac{1}{2} \lambda^{2} t}$ is a martingale wrt $\mathcal{F}_{t}=\sigma\left(B_{s}, s \leq t\right)$ for any $\lambda \in \mathbb{R}$ then $B_{t}, t \geq 0$ is Brownian motion

Proof.

$$
E\left[e^{\lambda\left(B_{t}-B_{s}\right)} \mid \mathcal{F}_{s}\right]=e^{\frac{1}{2} \lambda^{2}(t-s)}
$$

so $B_{t}-B_{s}$ independent of \mathcal{F}_{s} and $\mathcal{N}(0, t-s)$

Doob's inequality

If X_{t} is a submartingale with respect to \mathcal{F}_{t} and the paths of X_{t} are right continuous with probability one, then

$$
P\left(\sup _{0 \leq t \leq T} X_{t} \geq \lambda\right) \leq \frac{E\left[X_{T}^{+}\right]}{\lambda}
$$

Proof.

Let $0 \leq t_{0}<t_{1}<\cdots \quad \tilde{X}_{n}=X_{t_{n}}$ is a martingale wrt $\tilde{\mathcal{F}}_{n}=\mathcal{F}_{t_{n}}$.

$$
P\left(\sup _{0 \leq t_{i} \leq T} X_{t_{i}} \geq \lambda\right) \leq \frac{E\left[X_{T}^{+}\right]}{\lambda}
$$

By right continuity lhs $\uparrow P\left(\sup _{0 \leq t \leq T} X_{t} \geq \lambda\right)$ as mesh $\downarrow 0$

Optional stopping

$X_{t}, t \geq 0$ be a right continuous martingale with respect to $\mathcal{F}_{t}, t \geq 0$ and $\sigma \leq \tau$ bounded stopping times

$$
E\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right]=X_{\sigma}
$$

Proof.

$\sigma_{n}=2^{-n}\left(\left\lfloor 2^{n} \sigma\right\rfloor+1\right)$
$\tau_{n}=2^{-n}\left(\left\lfloor 2^{n} \tau\right\rfloor+1\right)$
$\sigma_{n} \leq \tau_{n} \leq B$
$E\left[X_{\tau_{n}} \mid \mathcal{F}_{\sigma_{n}}\right]=X_{\sigma_{n}} \quad$ ie $\int_{A} X_{\tau_{n}} d P=\int_{A} X_{\sigma_{n}} d P, A \in \mathcal{F}_{\sigma}$, since $\sigma \leq \sigma_{n}$ By right continuity $X_{\tau_{n}} \rightarrow X_{\tau}$ and $X_{\sigma_{n}} \rightarrow X_{\sigma}$

Recall $\left\{X_{n}\right\}_{n=1,2, \ldots}$ is uniformly integrable if

$$
\lim _{M \uparrow \infty} \sup _{n} \int_{\left|X_{n}\right| \geq M}\left|X_{n}\right| d P=0
$$

and if $X_{n} \xrightarrow{\text { a.s. }} X$ then $\left\{X_{n}\right\}_{n=1,2, \ldots}$ uniformly integrable $\Leftrightarrow X_{n} \xrightarrow{L^{1}} X$
$X_{\sigma_{n}}, n=1,2, \ldots$ and $X_{\tau_{n}}, n=1,2, \ldots$ are backwards martingales with respect to $\mathcal{F}_{n}, n=1,2, \ldots$, i.e. $E\left[X_{\sigma_{n-1}} \mid \mathcal{F}_{\sigma_{n}}\right]=X_{\sigma_{n}}$

Lemma

A backwards martingale is uniformly integrable

Proof.

$E\left[X_{m} \mid \mathcal{F}_{n}\right]=X_{n}$ whenever $m \leq n \quad$ so $\quad\left|X_{n}\right| \leq E\left[\left|X_{0}\right| \mid \mathcal{F}_{n}\right]$ SO

$$
\begin{gathered}
\int_{\left\{\left|X_{n}\right|>\ell\right\}}\left|X_{n}\right| d P \leq \int_{\left\{\left|X_{n}\right|>\ell\right\}}\left|X_{0}\right| d P=\int 1_{\left\{\left|X_{n}\right|>\ell\right\}}\left|X_{0}\right| d P \\
P\left(\left|X_{n}\right|>\ell\right) \leq \frac{E\left[\left|X_{n}\right|\right]}{\ell} \leq \frac{E\left[\left|X_{0}\right|\right]}{\ell}
\end{gathered}
$$

so $1_{\left\{\left|X_{n}\right|>\ell\right\}}\left|X_{0}\right| \xrightarrow{\text { a.s. }} 0$
$\int_{\left\{\left|X_{n}\right|>\ell\right\}}\left|X_{0}\right| d P \rightarrow 0$ by dominated convergence theorem

