
Conditional Expectation

Probability space (Ω,F , P)
Random variable X ∈ L1

Sub σ−field G ⊂ F

Definition
The conditional expectation of X given G is a random variable E [X |G]
satisfying

1 E [X |G] ∈ G
2

∫
A XdP =

∫
A E [X |G]dP for all A ∈ G

X ≥ 0, Q(A) =
∫

A XdP, A ∈ G. Q measure on (Ω,G, P), Q << P

Radon-Nikodym theorem: ∃dQ
dP ∈ L1(Ω,G, P) s.t. Q(A) =

∫
A

dQ
dP dP

E [X |G] = dQ
dP

if X = X+ − X− define E [X |G] = E [X+|G]− E [X−|G]
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Examples.
1 G = {∅,Ω}, E [X |G] = E [X ]

2 G = F , E [X |G] = X
3 Ω = [0, 1), F =Borel sets, P = Lebesgue, Fn = Dyadic level n,

E [X |Fn](ω) = Av[ i
2n , i+1

2n )X , ω ∈ [ i
2n , i+1

2n )

4 A1, A2, . . . partition of Ω. G is σ−field generated by this partition
E [X |G] = 1

P(Ai )

∫
Ai

XdP, ω ∈ Ai

In particular if A1 = A, A2 = AC , X = 1B then
E [1B|G] = P(B|A) = P(B∩A)

P(A) on A

5 P((X , Y ) ∈ A) =
∫

A f (x , y)dxdy

E [g(X )|Y ] =
R

g(x)f (x ,y)dxR
f (x ,y)dx =

∫
g(x)P(X ∈ dx |Y = y)

6 X ∈ G ⇒ E [XY |G] = XE [Y |G]

7 X indep of G ⇔ E [X |G] = E [X ]
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Martingales: Discrete time

Definition.
An non-decreasing family of sub-σ-fields Fn ⊂ Fn+1 ⊂ F is called a
filtration

Definition
Mn a sequence of random variables in L1(Ω,F , P). If

E [Mn+1 | Fn] = Mn

then Mn is a martingale with respect to the filtration Fn

submartingale: E [Mn+1 | Fn] ≥ Mn

supermartingale: E [Mn+1 | Fn] ≤ Mn

Example. Sn = X1 + · · ·+ Xn, Xi iid
E [Xi ] = 0 ⇒ Sn martingale. E [Xi ] ≥ 0 ⇒ Sn submartingale.
E [Xi ] ≤ 0 ⇒ Sn supermartingale

() Stochastic Calculus January 29, 2007 3 / 1



Lemma
Let φ : R → R be convex and Xn a martingale with respect to Fn. Then
φ(Xn) is a submartingale with respect to Fn.

Proof.
By Jensen’s inequality for conditional probability

E [φ(Xn) | Fn] ≥ φ(E [Xn | Fn]) = φ(Xn).

Example. Sn = X1 + · · ·+ Xn, Xi iid, E [Xi ] = 0, Var(Xi) = σ2 < ∞
Sn martingale. S2

n submartingale. S2
n − σ2n martingale.

E [S2
n+1 − σ2(n + 1)|Fn] = E [S2

n + 2SnXn+1 + X 2
n+1 − σ2(n + 1)|Fn] =

S2
n + σ2 − σ2(n + 1)
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Doob’s inequality (Discrete time)
Let Xn be a submartingale with respect to Fn. Then for any λ > 0 and
n = 1, 2, . . .,

P
(

max
1≤k≤n

Xk ≥ λ

)
≤ E [X+

n ]

λ
.

Proof.
Ai =

{
Xi ≥ λ, max0≤k≤i−1 Xk < λ

}
disjt ∪n

i=1Ai = {max1≤i≤n Xi ≥ λ}

P
(

max
1≤i≤n

Xi ≥ λ

)
=

n∑
i=1

P(Ai) ≤
n∑

i=1

1
λ

∫
Ai

XidP Tchebyshev

≤
n∑

i=1

1
λ

∫
Ai

E [Xn | Fi ]dP =
n∑

i=1

1
λ

∫
Ai

XndP

=
1
λ

∫
{max1≤i≤n Xi≥λ}

XndP
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Example

B′(t) is formally White noise so formally B′(t) =
∑

n Zne2πint , Zn iid
N (0, 1) so we expect B(t) =

∑
n Zn

e2πint−1
2πin Does it converge?

Kolmogorov Three Series Theorem
X1, X2, . . . independent.

∑∞
n=1 Xn converges if and only if

(1)
∑∞

n=1 P(|Xn| > M) < ∞;(2)
∑∞

n=1 E [X M
n ] < ∞;(3)

∑∞
n=1 Var(X M

n ) <
∞, for all M > 0 where X M

n = Xn1|Xn|≤M .

Proof of ”if”
Let X̄ M

n = X M
n − E [X M

n ]. By Doob’s inequality,

P(maxN≤m≤R |
∑m

n=N+1 X̄ M
n | ≥ ε) ≤ ε−2 ∑R

n=N+1 Var(X M
n )

By (3) rhs↓ 0 as N ↑ ∞ uniformly in R, so
∑N

n=1 X̄ M
n is Cauchy, hence

convergent. Now (2) ⇒
∑N

n=1 X M
n convergent

(1)+Borel-Cantelli ⇒ X M
n = Xn except for finitely many n. Q.E.D.

() Stochastic Calculus January 29, 2007 6 / 1



Definition
Let (Ω,F , P) be a probability space and Fn, n = 0, 1, 2, . . . a filtration
A random variable τ taking values in {0, 1, 2, . . .} is called a stopping
time if for each n = 0, 1, 2, . . .,

{ω ∈ Ω : τ(ω) ≤ n} ∈ Fn.

Example
Let Xn be a random walk starting at 0. Let τ = min{n ≥ 0 : Xn ≥ a}
be the first passage time of level a. τ is a stopping time.

Let σ = max{n ≥ 0 : Xn ≤ a}, the last passage time.
σ is not a stopping time.

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, n ≥ 0}

is a σ-field representing the information up to the stopping time τ
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Optional stopping
Mn martingale wrt filtration Fn. τ ≥ σ bounded stopping times

E [Xτ | Fσ] = Xτ

bounded means τ ≤ B Otherwise it is FALSE

Proof.
Need:

∫
A XτdP =

∫
A XσdP, ∀ A ∈ Fσ∫

A∩{σ=`} XσdP =
∫

A∩{σ=`} XBdP since A ∩ {σ = `} ∈ F`

so
∫

A XσdP =
∫

A XBdP same for Xτ since Fσ ⊂ Fτ
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Example
X1, X2, . . . iid P(Xi = 1) = P(Xi = −1) = 1/2
Sn = X1 + · · ·+ Xn Random walk
τ±a = min{n : |Sn| = a} E [τ±a] =?
S2

n − n martingale
τB
±a = min{τ±a, B} bounded stopping time

Optional stopping: E [S2
τB
±a
− τB

±a] = 0

limB↑∞ E [τB
±a] = E [τ±a] by monotone convergence theorem

limB↑∞ E [S2
τB
±a

] = a2 by bounded convergence theorem

E [τ±a] = a2

Counterexample
Try same for τa = min{n : Sn = a}
limB↑∞ E [S2

τB
a
] = E [τa]

but limB↑∞ E [S2
τB

a
] = ∞ 6= E [S2

τa ] = a2
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Martingales: Continuous time

Definition
Let (Ω,F , P) be a probability space
Ft , t ≥ 0 a filtration (= non-decreasing family of sub-σ-fields of F)
Mt , t ≥ 0 ∈ L1 is a martingale with respect to Ft , t ≥ 0 if whenever
s ≤ t ,

E [Mt | Fs] = Ms.

submartingale if ≥ supermartingale if ≤

Examples
Bt is a martingale wrt Ft = σ(Bs, s ≤ t)
B2

t is a submartingale
B2

t − t is a martingale

eλBt− 1
2 λ2t is a martingale for any λ ∈ R
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Martingale characterization of Brownian motion

If eλBt− 1
2 λ2t is a martingale wrt Ft = σ(Bs, s ≤ t) for any λ ∈ R

then Bt , t ≥ 0 is Brownian motion

Proof.

E [eλ(Bt−Bs)|Fs] = e
1
2 λ2(t−s)

so Bt − Bs independent of Fs and N (0, t − s)
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Doob’s inequality
If Xt is a submartingale with respect to Ft and the paths of Xt are right
continuous with probability one, then

P( sup
0≤t≤T

Xt ≥ λ) ≤
E [X+

T ]

λ

Proof.
Let 0 ≤ t0 < t1 < · · · X̃n = Xtn is a martingale wrt F̃n = Ftn .

P( sup
0≤ti≤T

Xti ≥ λ) ≤
E [X+

T ]

λ

By right continuity lhs ↑ P(sup0≤t≤T Xt ≥ λ) as mesh↓ 0
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Optional stopping
Xt , t ≥ 0 be a right continuous martingale with respect to Ft , t ≥ 0 and
σ ≤ τ bounded stopping times

E [Xτ | Fσ] = Xσ

Proof.
σn = 2−n(b2nσc+ 1)
τn = 2−n(b2nτc+ 1)
σn ≤ τn ≤ B
E [Xτn | Fσn ] = Xσn ie

∫
A XτndP =

∫
A XσndP, A ∈ Fσ,since σ ≤ σn

By right continuity Xτn → Xτ and Xσn → Xσ

Recall {Xn}n=1,2,... is uniformly integrable if

limM↑∞ supn
∫
|Xn|≥M |Xn|dP = 0

and if Xn
a.s.→ X then {Xn}n=1,2,... uniformly integrable ⇔ Xn

L1
→ X
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Xσn , n = 1, 2, . . . and Xτn , n = 1, 2, . . . are backwards martingales with
respect to Fn, n = 1, 2, . . ., i.e. E [Xσn−1 | Fσn ] = Xσn

Lemma
A backwards martingale is uniformly integrable

Proof.
E [Xm | Fn] = Xn whenever m ≤ n so |Xn| ≤ E [|X0| | Fn]
so ∫

{|Xn|>`}
|Xn|dP ≤

∫
{|Xn|>`}

|X0|dP =

∫
1{|Xn|>`}|X0|dP

P(|Xn| > `) ≤ E [|Xn|]
`

≤ E [|X0|]
`

so 1{|Xn|>`}|X0|
a.s.→ 0∫

{|Xn|>`} |X0|dP → 0 by dominated convergence theorem
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