Einstein's derivation of Brownian transition density

Particle starts at $0 \in \mathbf{R}^{3}$ and is pushed around by tiny molecular bombardments.
$f(t, x) d x=P\left(X_{t} \in d x\right)=\lim _{h \rightarrow 0} h^{-3} P\left(X_{t} \in \mathrm{a}\right.$ box of side length h around x$)$.

$$
\begin{gathered}
p(s, x, t, y) d y=P\left(X_{t} \in d y \mid X_{s}=x\right) . \\
f(t+\tau, x)=\int f(x-y, t) p(x-y, t, x, t+\tau) d y .
\end{gathered}
$$

homogeneity in space and time $p(s, x, t, y)=p(t-s, y-x)$.

$$
\begin{aligned}
& f(t+\tau, x)= \int\left(f(t, x)-y \cdot \nabla f(t, x)+\frac{1}{2} y \cdot D^{2} f(t, x) y+\cdots\right) p(\tau, y) d y \\
&= f(t, x) \int p(\tau, y) d y-\sum_{i=1}^{3} \frac{\partial f}{\partial x_{i}}(t, x) \int y_{i} p(\tau, y) d y \\
&+\frac{1}{2} \sum_{i, j=1}^{3} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(t, x) \int y_{i} y_{j} p(\tau, y) d y+\cdots . \\
& \int p(\tau, y) d y=1 .
\end{aligned}
$$

symmetry $\int y_{i} p(\tau, y) d y=0$ and $\int y_{i} y_{j} p(\tau, y) d y=0 \quad i \neq j$.

Influence of molecular bombardment in any two nonoverlapping intervals of time is independent
Variance should grow linearly, like the sum of independent random variables

$$
\begin{gathered}
\operatorname{Var}\left(X_{1}+\cdots+X_{N}\right) \simeq C N \\
\int y_{i}^{2} p(\tau, y) d y=D \tau
\end{gathered}
$$

Letting $\tau \rightarrow 0$ get heat equation

$$
\frac{\partial f}{\partial t}=\frac{1}{2} D \Delta f
$$

With the obvious initial condition $f(x, 0)=\delta_{0}$ this has the well known solution

$$
f(t, x)=\frac{e^{-\frac{|x|^{2}}{2 D t}}}{(2 \pi D t)^{3 / 2}}
$$

Markov processes

A process $X_{t}, t \geq 0$ is called a Markov process if for any function g and any $t \geq s$,

$$
E\left[g\left(X_{t}\right) \mid X_{u}, 0 \leq u \leq s\right]=E\left[g\left(X_{t}\right) \mid X_{s}\right] .
$$

Process determined by initial distr $P\left(X_{0} \in A\right)$ and the transition probs

$$
p(s, x, t, A)=P\left(X_{t} \in A \mid X_{s}=x\right) \quad s<t
$$

$$
\begin{aligned}
& P\left(X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right) \\
& =\int_{A_{n-1}} \cdots \int_{A_{1}} \int P\left(X_{0} \in d x_{0}\right) p\left(0, x_{0}, t_{1}, d x_{1}\right) \cdots p\left(t_{n-1}, x_{n-1}, t_{n}, A_{n}\right)
\end{aligned}
$$

Chapman-Kolmogorov equations

$$
p(s, x, t, A)=\int p(s, x, u, d y) p(u, y, t, A) \quad \text { for } s \leq u \leq t .
$$

Example. Brownian motion $p(s, x, t, d y)=\frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{(y-x)^{2}}{2(t-s)}} d y$

Gaussian measures

Definition

Let (E, \mathcal{E}, μ) be σ-finite, separable.
There exists a Gaussian family $\{X(f)\}_{f \in L^{2}(E, \mathcal{E}, \mu)}$ satisfying
(1) $f \mapsto X(f)$ is linear
(2) $E[X(f)]=0, E\left[|X(f)|^{2}\right]=\|f\|_{L^{2}(E, \mathcal{E}, \mu)}^{2}$

We can write $X(A)=X\left(1_{A}\right), A \in \mathcal{E}$ to get a random measure

Example: Brownian motion

$X_{t}-X_{s}=X([s, t))$ is a Gaussian measure intensity $\mu=$ Lebesgue measure

$$
\begin{equation*}
X(f)=\int f d B \tag{1}
\end{equation*}
$$

Gaussian measures

Definition

Let (E, \mathcal{E}, μ) be σ-finite, separable.
There exists a Gaussian family $\{X(f)\}_{f \in L^{2}(E, \mathcal{E}, \mu)}$ satisfying
(1) $f \mapsto X(f)$ is linear
(2) $E[X(f)]=0, E\left[|X(f)|^{2}\right]=\|f\|_{L^{2}(E, \mathcal{E}, \mu)}^{2}$

We can write $X(A)=X\left(1_{A}\right), A \in \mathcal{E}$ to get a random measure

Proof.

Let $\left\{e_{n}\right\}_{n=1,2,3 . \ldots}$ be an orthonormal basis of $L^{2}(E, \mathcal{E}, \mu)$ and X_{n}, $n=1,2, \ldots$ be iid $\mathcal{N}(0,1)$.

$$
X(f)=\sum_{n=1}^{\infty}\left\langle f, e_{n}\right\rangle X_{n}
$$

Functions of finite variation

$f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ right continuous
$\Delta=0=t_{0}<t_{1}<\cdots<t_{n}=t$ subdivision of $[0, t]$
$|\Delta|=\sup _{i}\left|t_{i+1}-t_{i}\right|=$ mesh size
f is of finite variation if for each $t<\infty$,

$$
\|f\|_{T v,[0, t]}=\sup _{\Delta} \sum_{i}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|<\infty
$$

Proposition

(1) A function of finite variation is the difference of two monotone increasing functions
(2) $\mu([0, t])=f(t)$ provides a 1-1 correspondence between measures on \mathbb{R}_{+}and functions of finite variation
(3) $\int_{0}^{\infty} g(t) d f(t)=\int g d \mu$ is the Riemann-Stieltjes integral
(9) A function of finite variation is differentiable almost everywhere

Quadratic variation

Definition

A stochastic process $X_{t}, t \geq 0$ has finite quadratic variation if there exists a finite process $\langle X, X\rangle_{t}, t \geq 0$ s.t. for each $t<\infty$ and each sequence $\left\{\Delta_{n}\right\}_{n=1,2, \ldots}$ of subdivisions of $[0, t]$ with $\left|\Delta_{n}\right| \rightarrow 0$,

$$
\lim _{n \rightarrow \infty} \sum_{i}\left|X_{t_{i+1}}-X_{t_{i}}\right|^{2} \stackrel{\text { prob }}{=}\langle X, X\rangle_{t}
$$

The process $\langle X, X\rangle_{t}, t \geq 0$ is non-decreasing. It is called the quadratic variation of X.

Recall $\lim _{n \rightarrow \infty} X_{n} \stackrel{\text { prob }}{=} X$ if $P\left(\left|X_{n}-X\right| \geq \epsilon\right) \rightarrow 0$ for each $\epsilon>0$

Quadratic variation

Theorem

Let X be a Gaussian measure with intensity μ on (E, \mathcal{E}) Let $A \in \mathcal{E}$ with $\mu(A)<\infty$ Let $\left\{A_{k}^{n}\right\}_{n=1,2, \ldots}$ be finite partitions of A such that $\sup _{k} \mu\left(A_{k}^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ Then

$$
\lim _{n \rightarrow \infty} \sum_{k}\left|X\left(A_{k}^{n}\right)\right|^{2}=\mu(A)
$$

in $L^{2}(\Omega, \mathcal{F}, P)$

Proof.

$\left\{X\left(A_{K}^{n}\right)\right\}_{k}$ independent $\mathcal{N}\left(0,\left|\mu\left(A_{k}^{n}\right)\right|\right)$ so

$$
\begin{gathered}
E\left[\left|\sum_{k} X^{2}\left(A_{k}^{n}\right)-\mu\left(A_{k}^{n}\right)\right|^{2}\right]=\sum_{k} E\left[\left|X^{2}\left(A_{k}^{n}\right)-\mu\left(A_{k}^{n}\right)\right|^{2}\right] \\
=2 \sum_{k}\left|\mu\left(A_{k}^{n}\right)\right|^{2} \leq 2 \mu(A) \sup _{k} \mu\left(A_{k}^{n}\right)
\end{gathered}
$$

Quadratic variation

Theorem
Let X be a Gaussian measure with intensity μ on (E, \mathcal{E}) Let $A \in \mathcal{E}$ with $\mu(A)<\infty$ Let $\left\{A_{k}^{n}\right\}_{n=1,2, \ldots .}$ be finite partitions of A such that $\sup _{k} \mu\left(A_{k}^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$
Then

$$
\lim _{n \rightarrow \infty} \sum_{k}\left|X\left(A_{k}^{n}\right)\right|^{2}=\mu(A)
$$

in $L^{2}(\Omega, \mathcal{F}, P)$

Brownian motion

Brownian motion is Gaussian measure with intensity $d t$

$$
\begin{equation*}
\langle B, B\rangle_{t}=t \tag{2}
\end{equation*}
$$

Quadratic variation

Note that if $X_{n} \xrightarrow{\text { prob }} X$ one can always choose a (non-random) subsequence such that $X_{n} \xrightarrow{\text { prob }} X$ So one can choose partitions so that

$$
\lim _{n \rightarrow \infty} \sum_{i}\left|X_{t_{i+1}}-X_{t_{i}}\right|^{2} \stackrel{\text { a.s. }}{=}\langle X, X\rangle_{t}
$$

For Brownian motion it turns out that any sequence $\Delta_{n} \subset \Delta_{n+1}$ gives a.s. convergence

Proposition

With probability one Brownian motion $B_{t}, t \geq 0$ is not of finite variation in any interval

Proof.

Let f be any continuous function on $[0, t]$

$$
\sum_{i}\left|f_{t_{i+1}}-f_{t_{i}}\right|^{2} \leq \max _{i}\left|f_{t_{i+1}}-f_{t_{i}}\right| \sum_{i}\left|f_{t_{i+1}}-f_{t_{i}}\right|
$$

Since $\max _{i}\left|f_{t_{i+1}}-f_{t_{i}}\right| \rightarrow 0$, if

$$
\langle f, f\rangle_{t}=\lim \sum_{i}\left|f_{t_{i+1}}-f_{t_{i}}\right|^{2}>0
$$

then

$$
\lim \sum_{i}\left|f_{t+1}-f_{t i}\right|=\|f\|_{T V,[0, t]}=\infty
$$

and if $\|f\|_{T V,[0, t]}<\infty$ then $\langle f, f\rangle_{t}=0$

Proposition

With probability one Brownian motion $B_{t}, t \geq 0$ is not locally Hölder of order α for any $\alpha>1 / 2$

Proof.

Let f be any continuous function on $[0, t]$ s.t. for some $0 \leq a<b \leq t$ and some $\alpha>1 / 2$, for all $a \leq s, t \leq b$,

$$
\left|f_{t}-f_{s}\right| \leq k|t-s|^{\alpha}
$$

Then

$$
\sum_{i}\left|f_{i+1}-f_{t_{i}}\right|^{2} \leq k^{2}(b-a) \max _{i}\left|t_{i+1}-t_{i}\right|^{2 \alpha-1}
$$

Theorem. (Paley, Wiener, Zygmund 33)

Brownian motion is nowhere differentiable with probability one

Proof. (Dvoretsky, Erdös, Kakutani 61)

Suppose that $B(t)$ was differentiable at a point $s \in[0,1]$.
Then $\exists \epsilon>0$ and an integer $\ell \geq 1$ such that

$$
|B(t)-B(s)| \leq \ell(t-s) \quad \text { for } \quad 0<t-s<\epsilon .
$$

Choose an integer $n>\ell$ large enough so that

$$
s \leq \frac{i}{n}<\frac{i+1}{n}<\frac{i+2}{n}<\frac{i+3}{n}<s+\epsilon \quad \text { where } \quad i=\lfloor n s\rfloor+1 .
$$

Then

$$
\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n} \quad \text { for } \quad j=i+1, i+2, i+3 .
$$

Proof.

Therefore the event that $B(t)$ is differentiable at some point is contained in the set

$$
B=\bigcup_{\ell \geq 1} \bigcup_{m \geq 1} \bigcap \bigcup_{n \geq m} \bigcup_{0 \leq i \leq n+1} \bigcap_{i \leq i \leq i+3}\left\{\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n}\right\} .
$$

We show $P(B)=0$ as follows.

$$
\begin{aligned}
& P\left(\bigcap_{n \geq m} \bigcup_{0 \leq i \leq n+1} \bigcap_{i \leq j \leq i+3}\left\{\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n}\right\}\right) \\
& \leq \liminf _{n \rightarrow \infty} P\left(\bigcup_{0 \leq i \leq n+1} \bigcap_{i \leq j \leq i+3}\left\{\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n}\right\}\right)
\end{aligned}
$$

Proof.

$P\left(\bigcap_{n \geq m} \bigcup_{0 \leq i \leq n+1} \bigcap_{i \leq j \leq i+3}\left\{\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n}\right\}\right)$
$\leq \liminf _{n \rightarrow \infty} P\left(\bigcup_{0 \leq i \leq n+1} \bigcap_{i \leq j \leq i+3}\left\{\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n}\right\}\right)$
$\leq \operatorname{liminfin}_{n \rightarrow \infty} \sum_{i=1}^{n+1} P\left(\bigcap_{i \leq j \leq i+3}\left\{\left|B\left(\frac{j}{n}\right)-B\left(\frac{j-1}{n}\right)\right|<\frac{7 \ell}{n}\right\}\right)$
$\leq \liminf _{n \rightarrow \infty} n\left[P\left(\left|B\left(\frac{1}{n}\right)\right|<\frac{7 \ell}{n}\right)\right]^{3}$
$=\liminf _{n \rightarrow \infty} n\left[P\left(|B(1)|<\frac{7 \ell}{\sqrt{n}}\right)\right]^{3}=\operatorname{liminin}_{n \rightarrow \infty} n\left[\frac{7 \ell}{\sqrt{n}}\right]^{3}=0$

Theorem Brownian motion is not Hölder of order $1 / 2$

this follows from
Modulus of continuity (P.Levy)
With probability one,

$$
\limsup _{\epsilon \rightarrow 0} \sup _{\substack{0 \leq s \leq t \leq 1 \\ t-s \leq \epsilon}} \frac{\left|B_{t}-B_{s}\right|}{\sqrt{2 \epsilon \log \epsilon^{-1}}}=1
$$

Lemma

$$
\begin{gathered}
\frac{x}{x^{2}+1} e^{-\frac{x^{2}}{2}} \leq \int_{x}^{\infty} e^{-\frac{y^{2}}{2}} d y \leq x^{-1} e^{-\frac{x^{2}}{2}} \quad x>0 \\
\int_{x}^{\infty} e^{-\frac{y^{2}}{2}} d y \leq x^{-1} \int_{x}^{\infty} y e^{-\frac{y^{2}}{2}} d y=x^{-1} e^{-\frac{x^{2}}{2}}
\end{gathered}
$$

Proof.

$$
-2 \int_{0}^{\infty}-\frac{y^{2}}{2} \quad \int^{\infty}-2-\frac{y^{2}}{2} \text {, }
$$

Proof of $\lim \sup _{\epsilon \rightarrow 0} \sup _{\substack{0 \leq s \leq t \leq 1 \\ t-s \leq \epsilon}} \frac{\left|B_{t}-B_{s}\right|}{\sqrt{2 \epsilon \log \epsilon^{-1}}} \geq 1$ let $\delta>0, A_{n}=\left\{\max _{1 \leq k \leq 2^{n}}\left|B_{\frac{k}{2^{n}}}-B_{\frac{k-1}{2 n}}\right| \leq(1-\delta) h\left(2^{-n}\right)\right\}$, $h(t)=\sqrt{2 t \log t^{-1}}$

$$
\begin{aligned}
& P\left(A_{n}\right) \leq\left(1-2 \int_{(1-\delta) \sqrt{2 \log 2^{n}}} \frac{e^{-y^{2} / 2}}{\sqrt{2 \pi}} d y\right)^{2^{n}} \text { independent increments } \\
& \leq e^{-C_{n}-1 / 22^{n\left(1-(1-\delta)^{2}\right)}} \text { by lemma }
\end{aligned}
$$

so $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$. By the Borel-Cantelli lemma, almost every ω is in at most finitely many A_{n}.i.e.

$$
\lim \sup \sup _{\substack{0 \leq s \in t \leq 1 \\ t \leq t \leq 1 \\ t-s<\epsilon}} \frac{\left|B_{t}-B_{s}\right|}{\sqrt{2 \epsilon \log \epsilon^{-1}} \geq 1-\delta}
$$

now let $\delta \downarrow 0$
Note: This proves that Brownian motion is not Hölder of order $\alpha \geq 1 / 2$

Proof of $\lim \sup _{\epsilon \rightarrow 0} \sup _{\substack{0 \leq s \leq t \leq 1 \\ 1-s<\epsilon}} \frac{\left|B_{t}-B_{s}\right|}{\sqrt{2 \epsilon \log \epsilon^{-1}}} \leq 1$ let $\delta>0$ and choose $\epsilon>0$ so that $(1+\epsilon)^{2}(1-\delta)>1+\delta$ let

$$
\begin{gathered}
B_{n}=\left\{\max _{i, j \in K} \frac{\mid B_{j / 2^{n}}-B_{i / 2^{n} \mid}}{h\left(k / 2^{n}\right)} \geq 1+\epsilon\right\} \\
K=\left\{0 \leq i<j<2^{n}, 0<k=j-i \leq 2^{n \delta}\right\} \\
P\left(B_{n}\right) \leq \sum_{K} \frac{2}{\sqrt{2 \pi}} \int_{(1+\epsilon) \sqrt{\log \left(k^{-1} 2^{n}\right)}}^{\infty} e^{-\frac{y^{2}}{2}} d y \\
\leq C \sum_{K}\left[\log \left(k^{-1} 2^{n}\right)\right]^{-1 / 2} e^{-(1+\epsilon)^{2} \log \left(k^{-1} 2^{n}\right) \quad \text { lemma }} \\
\leq C 2^{-n(1-\delta)(1-\epsilon)^{2}} \sum_{K}\left[\log \left(k^{-1} 2^{n}\right)\right]^{-1 / 2} \quad k^{-1} \geq 2^{-n \delta}
\end{gathered}
$$

$$
\begin{gathered}
B_{n}=\left\{\max _{i, j \in K} \frac{\left|B_{j / 2^{n}}-B_{i / 2^{n}}\right|}{h\left(k / 2^{n}\right)} \geq 1+\epsilon\right\} \\
K=\left\{0 \leq i<j<2^{n}, 0<k=j-i \leq 2^{n \delta}\right\} \\
P\left(B_{n}\right) \leq C 2^{-n(1-\delta)(1-\epsilon)^{2}} \sum_{K}\left[\log \left(k^{-1} 2^{n}\right)\right]^{-1 / 2} \\
\leq C n^{-1 / 2} 2^{n\left((1+\delta)-(1-\delta)(1+\epsilon)^{2}\right)}|K| \leq 2^{n(1+\delta)}, \log \left(k^{-1} 2^{n}\right) \geq \log 2^{n(1-}
\end{gathered}
$$

summable so with probability one there is an N s.t. for $n>N$, for $i, j \in K$,

$$
\left|B_{j / 2^{n}}-B_{i / 2^{n}}\right|<(1+\epsilon) h\left(k / 2^{n}\right)
$$

Let $\gamma>0$. Pick N large so that $\sum_{m=n+1}^{\infty} h\left(2^{-m}\right) \leq \gamma h\left(2^{-(n+1)(1-\delta)}\right)$, $n \geq N$
Suppose that $t=i 2^{-n}+2^{-n_{1}}+2^{-n_{2}}+\cdots$ with $N \leq n<n_{1}<n_{2}<\cdots$ and $i \in K$,

$$
\left|B_{t}-B_{i / 2^{n}}\right| \leq(1+\epsilon) \sum_{m=n+1}^{\infty} h\left(2^{-m}\right) \leq(1+\epsilon) \gamma h\left(2^{-(n+1)(1-\delta)}\right)
$$

now suppose we have $0 \leq s<t \leq 1$ and the special n so that

$$
2^{-(n+1)(1-\delta)} \leq t-s<2^{-n(1-\delta)}
$$

has $n \geq N$ then we can write

$$
\begin{aligned}
\left|B_{t}-B_{s}\right| & \leq\left|B_{i / 2^{n}}-B_{s}\right|+\left|B_{j / 2^{n}}-B_{i / 2^{n}}\right|+\left|B_{t}-B_{j / 2^{n}}\right| \\
& \leq 2(1+\epsilon) \gamma h\left(2^{-(n+1)(1-\delta)}\right)+(1+\epsilon) h\left((j-i) 2^{-n}\right) \\
& \leq(2(1+\epsilon) \gamma+1+\epsilon) h(t-s) \quad \text { if } t-s \text { small enough }
\end{aligned}
$$

let $\delta \downarrow 0$ and then $\gamma \downarrow 0$

