Brownian motion as the limit of random walks

 X_{1}, X_{2}, \ldots iid Bernoulli $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2$$$
S_{n}=X_{1}+\cdots+X_{n}
$$

$B_{n}(t)=\frac{1}{\sqrt{n}} S_{\lfloor t n\rfloor}$ Takes steps $\pm \frac{1}{\sqrt{n}}$ at times $\frac{1}{n}, \frac{2}{n}, \ldots$
Or $\bar{B}_{n}(t)=$ polygonalized version. Almost the same but continuous

$$
B_{n}(t) \xrightarrow{n \rightarrow \infty} \text { Brownian motion } B(t)
$$

What does it mean for stochastic processes to converge?

$$
\operatorname{dist}\left(B_{n}\left(t_{1}\right), \ldots, B_{n}\left(t_{k}\right)\right) \rightarrow \operatorname{dist}\left(B\left(t_{1}\right), \ldots, B\left(t_{k}\right)\right) \quad k=1,2,3, \ldots
$$

Convergenence of finite dimesional distributions Immediate from (multidimensional) central limit theorem Same for $\bar{B}_{n}(t)$
$P_{n}=$ measure on $C[0, T]$ corresponding to $\bar{B}_{n}(t), 0 \leq t \leq T$

Invariance principle (Donsker's Theorem)

$$
P_{n} \Rightarrow P
$$

Much stronger than convergence of finite dimensional distributions

Examples

(1)

$$
\operatorname{dist}\left(\max _{0 \leq m \leq n} \frac{1}{\sqrt{n}} S_{m}\right) \rightarrow \operatorname{dist}\left(\sup _{0 \leq t \leq 1} B(t)\right)
$$

2

$$
\operatorname{dist}\left(n^{-1-\frac{k}{2}} \sum_{m=1}^{n} S_{m}^{k}\right) \rightarrow \operatorname{dist}\left(\int_{0}^{1} B^{k}(t) d t\right)
$$

For a proof see Billingsley "Convergence of Probability Measures"

Brownian motion with variance σ^{2} and drift b as the limit of random walks
$X_{n}(t)$ jumps $\frac{1}{\sqrt{n}} \sigma+\frac{1}{n} b$ or $-\frac{1}{\sqrt{n}} \sigma+\frac{1}{n} b$ with probabilities $1 / 2$ at times $\frac{1}{n}, \frac{2}{n}, \ldots$

$$
\begin{gathered}
X_{n}(t)-b \frac{\lfloor n t\rfloor}{n}=\sigma B_{n}(t) \\
X_{n}(t) \rightarrow \sigma B(t)+b t
\end{gathered}
$$

General local diffusivity $\sigma^{2}(t, x)$ and drift $b(t, x)$ $X_{n}(t)$ jumps

$$
\frac{1}{\sqrt{n}} \sigma\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right)+\frac{1}{n} b\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right) \quad \text { or } \quad-\frac{1}{\sqrt{n}} \sigma\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right)+\frac{1}{n} b\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right)
$$

with probabilities $1 / 2$ at times $\frac{i}{n}, i=1,2, \ldots \quad X_{n}(t) \rightarrow X(t)$

$$
d X(t)=\sigma(t, X(t)) d B(t)+b(t, X(t)) d t
$$

But how to prove it?

Here's another proof that random walks converge to Brownian motions, which does generalize
Recall $B_{n}(t)=\frac{1}{\sqrt{n}} S_{\lfloor t n\rfloor}$ where $S_{n}=X_{1}+\cdots+X_{n}$
Let $f \in C^{2}$

$$
\begin{gathered}
f\left(B_{n}(t)\right)=\frac{1}{n} \sum_{i=0}^{\lfloor t n\rfloor-1} L_{n} f\left(B_{n}\left(\frac{i}{n}\right)\right)=\text { Martingale } \\
L_{n} f(x)=\frac{1}{2} n\left(f\left(x+n^{-1 / 2}\right)-2 f(x)+f\left(x-n^{-1 / 2}\right)\right) \\
L_{n} f(x) \rightarrow \frac{1}{2} f^{\prime \prime}(x) \\
\frac{1}{n} \sum_{i=0}^{\lfloor t n\rfloor-1} L_{n} f\left(B_{n}\left(\frac{i}{n}\right)\right) \rightarrow \frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s
\end{gathered}
$$

$f(B(t))-\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s=$ martingale $\Rightarrow B(t)$ Brownian motion

Really one needs to show that P_{n} are precompact as a set of probability measures. It is similar to the proof that Brownian motion is continuous, but you just use the martingale formulation directly. The details are long, but the final result is

Theorem

Suppose that
(1) $n \int_{|y-x| \leq 1}\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right) p_{1 / n}(x, d y) \rightarrow a_{i j}(x)$ uniformly on compact sets
(2) $n \int_{|y-x| \leq 1}\left(y_{i}-x_{i}\right) p_{1 / n}(x, d y) \rightarrow b_{i}(x)$ uniformly on compact sets
(3) $n p_{1 / n}\left(x, B(x, \epsilon)^{C}\right) \rightarrow 0$ uniformly on compact sets, for each $\epsilon>0$ where $a(x)$ and $b(x)$ are continuous. Suppose that we have weak uniqueness for the stochastic differential equation

$$
d X=\sigma(X) d B+b(X) d t
$$

and let P denote the measure on $C[0, T]$ corresponding to $X(t)$, $0 \leq t \leq T$. Then $P_{n} \Rightarrow P$

Similarly

Theorem

Suppose that $\sigma(t, x)$ and $b(t, x)$ are locally bounded measurable functions, continuous in x for each $t \geq 0$ and one has weak uniqueness for the stochastic differential equation

$$
d X=\sigma(X) d B+b(X) d t, \quad X_{0}=x
$$

Let $P_{x}^{a, b}$ denote the measure on $C[0, T]$ corresponding to $X(t)$, $0 \leq t \leq T$, where $a=\sigma \sigma^{T}$. Suppose that $\sigma_{n}(t, x)$ and $b_{n}(t, x)$ are measurable and locally bounded uniformly in n, and that

$$
\lim _{n \rightarrow \infty} \int_{0}^{T} \sup _{|x| \leq R}\left\{\left\|a_{n}(s, x)-a(s, x)\right\|+\left|b_{n}(s, x)-b(s, x)\right|\right\} d s=0 .
$$

Then

$$
P_{x}^{a_{n}, b_{n}} \Rightarrow P_{x}^{a, b} .
$$

Binomial model

$S_{n}=$ price of asset at time n
$P\left(S_{n+1}=u S_{n}\right)=p P\left(S_{n+1}=d S_{n}\right)=1-p=q$ Often $d=1 / u$
$r=$ interest rate $0<d<1+r<u$
European call option has strike price K at time $1, d S_{0}<K<u S_{0}$ It means it is worth $u S_{0}-K$ if the stock goes up, and 0 if the stock goes down
Question: How much is it worth today?
Let's see what you could do with the stock and money market
$X_{n}=$ wealth at time n
$\Delta_{n}=$ stock held at time n
Time 0: $\Delta_{0} S_{0}$ stock, $X_{0}-\Delta_{0} S_{0}$ cash
At time 1 it is worth: $\Delta_{0} S_{1}+(1+r) X_{0}-\Delta_{0} S_{0}$
ie. it is worth $\Delta_{0} u S_{0}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$ if the stock goes up and $\Delta_{0} d S_{0}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)$ if the stock goes down
Suppose we take
$\Delta_{0} u S_{0}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)=u S_{0}-K$,
$\Delta_{0} d S_{0}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)=0$
ie. $\Delta_{0}=\frac{u S_{0}-K}{(u-d) S_{0}}, X_{0}=\frac{1+r-d}{u-d}(1+r)^{-1}\left(u S_{0}-K\right)$
Suppose you have X_{0}.
If the option costs more than X_{0}, you won't buy it, because you can do better with the stock and money market strategy just described If the option costs less than X_{0}, it is a better deal than just described, so everyone would short the stock to buy it, and the stock would go down.

So as long as the market is efficient = no arbitrage opportunities, the option is worth

$$
V_{0}=(1+r)^{-1} \tilde{p}\left(u S_{0}-K\right) \quad \tilde{p}=\frac{1+r-d}{u-d}
$$

If the option was worth V_{1} at time 1 then you can do the computation again to get

$$
V_{0}=(1+r)^{-1} \tilde{E}\left[V_{1}\right]
$$

where \tilde{p} is the probability of the stock going up and $1-\tilde{p}$ is the probability of the stock going down

IT DOESN'T DEPEND ON p !!!!!

$(1+r)^{-n} V_{n}$ is a martingale wrt the "risk neutral" measure \tilde{P}

$$
V_{0}=(1+r)^{-n} \tilde{E}\left[V_{n}\right]
$$

Limit of small transaction periods

For each n, consider a binomial model $S_{n}(t)$ with

$$
\begin{aligned}
& u_{n}=1+\frac{\sigma}{\sqrt{n}} \\
& d_{n}=1-\frac{\sigma}{\sqrt{n}} \\
& r_{n}=0 \\
& \text { period }=\frac{1}{n} \\
& \tilde{p}=\frac{1+r_{n}-d_{n}}{u_{n}-d_{n}}=\frac{1}{2}=1-\tilde{p}
\end{aligned}
$$

At each time $1 / n, X_{n}=\log S_{n}$ jump up $\log u_{n}$ or down $\log d_{n}$,each with probability $1 / 2$

$$
\begin{gathered}
n E\left[X_{n+1}-X_{n} \mid X_{n}=x\right]=\frac{1}{2} n\left(\log u_{n}-\log d_{n}\right) \\
n E\left[\left(X_{n+1}-X_{n}\right)^{2} \mid X_{n}=x\right]=\frac{1}{2} n\left(\left(\log u_{n}\right)^{2}+\left(\log d_{n}\right)^{2}\right) \\
\log u_{n}=\log \left(1+\frac{\sigma}{\sqrt{n}}\right)=\frac{\sigma}{\sqrt{n}}-\frac{\sigma^{2}}{2 n}+o\left(n^{-1}\right) \\
\log d_{n}=\log \left(1-\frac{\sigma}{\sqrt{n}}\right)=-\frac{\sigma}{\sqrt{n}}-\frac{\sigma^{2}}{2 n}+o\left(n^{-1}\right) \\
n E\left[X_{n+1}-X_{n} \mid X_{n}=x\right]=\frac{1}{2} n\left(\log u_{n}+\log d_{n}\right)=-\frac{\sigma^{2}}{2}+o(1) \\
n E\left[\left(X_{n+1}-X_{n}\right)^{2} \mid X_{n}=x\right]=\frac{1}{2} n\left(\left(\log u_{n}\right)^{2}+\left(\log d_{n}\right)^{2}\right)=\sigma^{2}
\end{gathered}
$$

Hence

$$
X_{n}(t) \rightarrow X(t) \quad d X=\sigma d B-\frac{1}{2} \sigma^{2} d t
$$

$$
S_{n}(t) \rightarrow S(t)=e^{\sigma B_{t}-\frac{1}{2} \sigma^{2} t} \quad \text { Geometric Brownian motion }
$$

European option pays $V(S(T))$ at time T
Value today $=V(t, S(t))=e^{-r(T-t)} E\left[V(S(T)) \mid \mathcal{F}_{t}\right]$
Plug into normal density \Rightarrow Black-Scholes formula

$$
\begin{gathered}
V\left(t, S_{t}\right)=S_{t} \Phi\left(\frac{\log \frac{S_{t}}{K}+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right) \\
-e^{-r(T-t)} K \Phi\left(\frac{\log \frac{S_{t}}{K}+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right) \\
\Phi(x)=\int_{-\infty}^{x} \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi}} d y
\end{gathered}
$$

Brownian local time

Definition

$$
L_{t}(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{0}^{t} 1\left(\left|B_{s}-x\right| \leq \epsilon\right) d s
$$

To prove that it exists, and is continuous

$$
f_{\epsilon}(y)= \begin{cases}|y|, & |y| \geq \epsilon \\ \frac{1}{2} \epsilon^{-1}\left(y^{2}+\epsilon^{2}\right), & |x| \leq \epsilon\end{cases}
$$

Then $\frac{1}{2} f_{\epsilon}^{\prime \prime}(y)=\frac{1}{2 \epsilon} 1(|y| \leq \epsilon)$

$$
\begin{aligned}
f_{\epsilon}\left(B_{t}\right)-\int_{0}^{t} f_{\epsilon}^{\prime}\left(B_{s}\right) d B_{s} & =\frac{1}{2 \epsilon} \int_{0}^{t} 1\left(\left|B_{s}-x\right| \leq \epsilon\right) d s \\
f_{\epsilon}\left(B_{t}\right) & \rightarrow\left|B_{t}\right|
\end{aligned}
$$

$$
\begin{gathered}
E\left[\left(\int_{0}^{t}\left(f_{\epsilon}^{\prime}\left(B_{s}\right)-\operatorname{sgn}\left(B_{s}\right)\right) d B_{s}\right)^{2}\right] \\
\left.=E\left[\int_{0}^{t}\left(f_{\epsilon}^{\prime}\left(B_{s}\right)-\operatorname{sgn}\left(B_{s}\right)\right)\right)^{2} d s\right] \\
=E\left[\int_{0}^{t}\left(\epsilon^{-1}\left(B_{s}\right)-\operatorname{sgn}\left(B_{s}\right)\right)^{2} 1\left(\left|B_{s}\right| \leq \epsilon\right) d s\right] \\
\leq E\left[\int_{0}^{t} 1\left(\left|B_{s}\right| \leq \epsilon\right) d s\right] \\
\rightarrow 0 \text { as } \epsilon \rightarrow 0 \\
\frac{1}{2 \epsilon} \int_{0}^{t} 1\left(\left|B_{s}-x\right| \leq \epsilon\right) d s=f_{\epsilon}\left(B_{t}\right)-\int_{0}^{t} f_{\epsilon}^{\prime}\left(B_{s}\right) d B_{s} \\
\end{gathered}
$$

Same proof gives

Tanaka's formula's

$$
\begin{aligned}
& \left|B_{t}-x\right|-\int_{0}^{t} \operatorname{sgn}\left(B_{s}-x\right) d B_{s}=L_{t}(x) \\
& \left(B_{t}-x\right)_{+}-\int_{0}^{t} 1\left(B_{s} \geq x\right) d B_{s}=\frac{1}{2} L_{t}(x)
\end{aligned}
$$

$L_{t}(x)$ is continuous in t and x, nondecreasing in t

$$
\int_{0}^{t} \operatorname{sgn}\left(B_{s}-x\right) d B_{s}=\tilde{B}_{t}
$$

Lemma

Let $x(t)$ be a continuous function on $[0, \infty)$ with $x(0)=0$. There exists a unique continuous function $a(t)$ on $[0, \infty)$ such that $a(0)=0, a(t)$ is nondecreasing, $a(t)$ is increasing only on $\{t: x(t)+a(t)=0\}$ in the sense that

$$
\int_{0}^{\infty} 1(x(s)+a(s)>0) d a=0
$$

and such that

$$
x(t)+a(t) \geq 0, \quad t \geq 0
$$

Proof

Let

$$
a(t)=0 \vee \sup _{0 \leq s \leq t}\{-x(s)\}
$$

Then $x(t) \geq 0 \wedge \inf _{0 \leq s \leq t} x(s)=-a(t), a(0)=0, a(t)$ nondecreasing, continuous.

Proof

$$
a(t)=0 \vee \sup _{0 \leq s \leq t}\{-x(t)\}
$$

Suppose $\left(t_{1}, t_{2}\right) \subset\{t \geq 0: x(t)+a(t)>\epsilon\}$

$$
-x(s)=a(s)-(x(s)+a(s)) \leq a\left(t_{2}\right)-\epsilon, \quad t_{1} \leq s \leq t_{2}
$$

so

$$
a\left(t_{2}\right)=a\left(t_{1}\right)
$$

Proof.

Uniqueness: Suppose $a_{1}(t)$ and $a_{2}(t)$ both do the job
Suppose $\exists \tau$,

$$
\begin{gathered}
x(\tau)+a_{1}(\tau)>x(\tau)+a_{2}(\tau) \\
\sigma=\sup \left\{0 \leq s<\tau: x(s)+a_{1}(s)=x(s)+a_{2}(s)\right\} \\
x(t)+a_{1}(t)>x(t)+a_{2}(t), \quad \sigma<t \leq \tau \\
x(t)+a_{2}(t) \geq 0 \Rightarrow \quad x(t)+a_{1}(t)>0 \quad \sigma<t \leq \tau \\
\Rightarrow \\
\Rightarrow \quad a_{1}(\tau)=a_{1}(\sigma) \\
\left.\Rightarrow x(\tau)+a_{1}(\tau)\right]-\left[x(\tau)-a_{2}(\tau)\right] \\
\\
\quad=\left[x(\sigma)+a_{1}(\sigma)\right]-\left[x(\sigma)-a_{2}(\sigma)\right]=0
\end{gathered}
$$

$$
\begin{gathered}
\sup _{0 \leq s \leq t} B_{s}=0 \vee \sup _{0 \leq s \leq t}\left\{-\left(-B_{s}\right\}\right. \\
\text { Lemma } \Rightarrow \sup _{0 \leq s \leq t} B_{s}-B_{t} \geq 0 \\
\text { Tanaka } \Rightarrow-\tilde{B}_{t}+L_{t}(x)=\left|B_{t}\right| \geq 0
\end{gathered}
$$

By uniqueness

$$
L_{t}(x) \stackrel{\text { dist }}{=} \sup _{0 \leq s \leq t} B_{s} \quad \sup _{0 \leq s \leq t} B_{s}-B_{t} \stackrel{\text { dist }}{=}\left|B_{t}\right|
$$

