Martingale representation theorem

$\Omega=C[0, T], \mathcal{F}_{T}=$ smallest σ-field with respect to which B_{s} are all measurable, $s \leq T, P$ the Wiener measure, $B_{t}=$ Brownian motion
M_{t} square integrable martingale with respect to \mathcal{F}_{t}
Then there exists $\sigma(t, \omega)$ which is
(1) progressively measurable
(2) square integrable
(3) $\mathcal{B}([0, \infty)) \times \mathcal{F}$ mble
such that

$$
M_{t}=M_{0}+\int_{0}^{t} \sigma(s) d B_{s}
$$

Lemma

$\mathcal{A}=$ set of all linear combinations of random variables of the form

$$
e^{\int_{0}^{T} h d B-\frac{1}{2} \int_{0}^{T} h^{2} d t}, \quad h \in L^{2}([0, T])
$$

\mathcal{A} is dense in $L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$

Proof

Suppose $g \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ is orthogonal to all such functions
We want to show that $g=0$
By an easy choice of simple functions h we find that for any $\lambda_{1}, \ldots, \lambda_{n} \in R$ and $t_{1}, \ldots, t_{n} \in[0, T]$,

$$
E^{P}\left[g e^{\lambda_{1} B_{t_{1}}+\cdots+\lambda_{n} B_{t_{n}}}\right]=0
$$

Ins real analytic in λ and hence has an analytic extension to $\lambda \in \mathbb{C}^{n}$

Since $E^{P}\left[g e^{\left.\lambda_{1} B_{t_{1}}+\cdots+\lambda_{n} B_{t_{n}}\right]}\right.$ is analytic and vanishes on the real axis, it is zero everywhere. In particular

$$
E^{P}\left[g e^{i\left(y_{1} B_{t_{1}}+\cdots+y_{n} B_{t_{n}}\right)}\right]=0
$$

Suppose $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\hat{\phi}(y)=(2 \pi)^{-n / 2} \int_{\mathbf{R}^{n}} \phi(x) e^{-i x \cdot y} d x
$$

Fourier inversion:

$$
\begin{gathered}
\phi(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \hat{\phi}(y) e^{i x \cdot y} d y \\
E^{P}\left[g \phi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)\right]=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \hat{\phi}(y) E^{P}\left[e^{i y_{1} B_{t_{1}}+\cdots+y_{n} B_{t_{n}}}\right] d y=0
\end{gathered}
$$

Hence g is orthogonal to fns of form $\phi\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ where $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ Dense in $L^{2}\left(\Omega, \mathcal{F}_{T}, P\right) \Rightarrow g=0$

Lemma

$F \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ There exists a unique $f(t, \omega)$ which is
(1) progressively measurable
(2) square integrable
(3) $\mathcal{B}([0, \infty)) \times \mathcal{F}$ measurable such that

$$
F(\omega)=E[F]+\int_{0}^{T} f d B .
$$

Proof of Uniqueness

suppose

$$
\begin{aligned}
& F=E[F]+\int_{0}^{T} f_{1} d B=E[F]+\int_{0}^{T} f_{2} d B \\
& \Rightarrow \int_{0}^{T}\left(f_{2}-f_{1}\right) d B=0 \Rightarrow \int_{0}^{T} E\left[\left(f_{2}-f_{1}\right)^{2}\right] d t=0 \Rightarrow f_{2}=f_{1}
\end{aligned}
$$

Proof of existence

First we prove it if F is of the form $F=e^{\int_{0}^{\top} h d B-\frac{1}{2} \int_{0}^{\top} h^{2} d s}$ Defining $F_{t}=e^{\int_{0}^{t} h d B-\frac{1}{2} \int_{0}^{t} h^{2} d s}$ gives

$$
d F=h F d B, \quad F_{0}=1,
$$

SO

$$
F_{t}=1+\int_{0}^{t} F_{s} h d B .
$$

Plugging in $t=T$ gives the result.
If F is a linear combination of such functions the result follows by linearity

Proof of existence for $F \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$
$F_{n} \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ with $F_{n} \rightarrow F$ and

$$
F_{n}=E\left[F_{n}\right]+\int_{0}^{T} f_{n} d B .
$$

$E\left[F_{n}\right] \rightarrow E[F]$, so wlog $E\left[F_{n}\right]=E[F]=0$

$$
E\left[\left(F_{n}-F_{m}\right)^{2}\right]=\int_{0}^{T} E\left[\left(f_{n}-f_{m}\right)^{2}\right] d t \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

$\Rightarrow \quad f_{n}$ Cauchy in $L^{2}([0, T] \times \Omega, d x \times d P)$.
Let f be the limit. Taking limits we have

$$
F=E[F]+\int_{0}^{T} f d B .
$$

Proof of the martingale representation theorem

By previous lemma, for each t we have $\sigma_{t}(s, \omega)$ such that

$$
M_{t}=E\left[M_{t}\right]+\int_{0}^{t} \sigma_{t}(s) d B_{s}
$$

Let $t_{2}>t_{1}$

$$
\begin{gathered}
M_{t_{1}}=E\left[M_{t_{2}} \mid \mathcal{F}_{t_{1}}\right] \\
\int_{0}^{t_{1}} \sigma_{t_{2}}(s) d B_{s}=\int_{0}^{t_{1}} \sigma_{t_{1}}(s) d B_{s}
\end{gathered}
$$

Uniqueness $\Rightarrow \quad \sigma_{t_{1}}=\sigma_{t_{2}}$

Quadratic variation of $X_{t}=\int_{0}^{t} \sigma(s) d B_{s}$

$e^{\lambda \int_{0}^{t} \sigma(s) d B_{s}-\frac{\lambda^{2}}{2} \int_{0}^{t} \sigma^{2}(s) d s}=$ martingale

$$
E\left[\left.e^{\lambda \int_{t_{i}}^{t_{i+1}} \sigma(s) d B_{s}-\frac{\lambda^{2}}{2} \int_{t_{i}}^{t_{i+1}} \sigma^{2}(s) d s} \right\rvert\, \mathcal{F}_{t_{i}}\right]=0
$$

$E\left[Z\left(t_{i}, t_{i+1}\right) \mid \mathcal{F}_{t_{i}}\right]=0, \quad Z\left(t_{i}, t_{i+1}\right)=\left(\int_{t_{i}}^{t_{i+1}} \sigma(s) d B_{s}\right)^{2}-\int_{t_{i}}^{t_{i+1}} \sigma^{2}(s) d s$

$$
\begin{gathered}
E\left[\left\{Z\left(t_{i}, t_{i+1}\right)\right\}^{2}-4\left(\int_{t_{i}}^{t_{i+1}} \sigma^{2}(s) d s\right)^{2} \mid \mathcal{F}_{t_{i}}\right]=0 \\
E\left[\left(\sum_{i} Z\left(t_{i}, t_{i+1}\right)\right)^{2}\right] \leq 4 E\left[\left(\sum_{i}\left(\int_{t_{i}}^{t_{i+1}} \sigma^{2}(s) d s\right)^{2}\right] \rightarrow 0\right. \\
\left\langle X_{t}, X_{t}\right\rangle=\int_{0}^{t} \sigma^{2}(s, \omega) d s
\end{gathered}
$$

Levy's Theorem

Let X_{t} be a process adapted to a filtration \mathcal{F}_{t} which
(1) has continuous sample paths
(2) is a martingale
(3) has quadratic variation t

Then X_{t} is a Brownian motion

Proof of Levy's theorem

Enough to show that for each λ,

$$
E\left[e^{i \lambda\left(X_{t}-X_{s}\right)} \mid \mathcal{F}_{s}\right]=e^{-\frac{1}{2} \lambda^{2}(t-s)}
$$

Call $M_{t}=e^{i \lambda X_{t}+\frac{1}{2} \lambda^{2} t}, t_{j}=s+\frac{j}{2^{n}}(t-s)$

$$
\begin{aligned}
& M_{t}-M_{s}=\sum_{j=1}^{2^{n}} M_{t_{j}}-M_{t_{j-1}} \\
& =\sum_{j=1}^{2^{n}} i \lambda M_{t_{j-1}}\left(X_{t_{j}}-X_{t_{j-1}}\right)-\frac{1}{2} \lambda^{2} M_{\xi_{j}}\left[\left(X_{t_{j}}-X_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right]
\end{aligned}
$$

$E\left[M_{t_{j-1}}\left(X_{t_{j}}-X_{t_{j-1}}\right) \mid \mathcal{F}_{s}\right]=E\left[E\left[M_{t_{j-1}}\left(X_{t_{j}}-X_{t_{j-1}}\right) \mid \mathcal{F}_{t_{j-1}}\right] \mid \mathcal{F}_{s}\right]$

$$
=E\left[M_{t_{j-1}} E\left[\left(X_{t_{j}}-X_{t_{j-1}}\right) \mid \mathcal{F}_{t_{j-1}}\right] \mid \mathcal{F}_{s}\right]=0
$$

Proof of Levy's theorem

Fix m. Let $\xi^{m}=\max \left\{\frac{i}{2^{m}}: \frac{i}{2^{m}} \leq \xi\right\}$

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{2^{n}} M_{\xi_{j}^{m}}\left[\left(X_{t_{j}}-X_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right]=0
$$

So we only have to show

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{2^{n}}\left[M_{\xi_{j}}-M_{\xi_{j}}\right]\left(X_{t_{j}}-X_{t_{j-1}}\right)^{2}=0
$$

Would follow from

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{2^{n}}\left(X_{\xi_{j}^{m}}-X_{\xi_{j}}\right)\left(X_{t_{j}}-X_{t_{j-1}}\right)^{2}=0
$$

Left hand side $=t \lim _{n \rightarrow \infty} \max _{1 \leq j \leq 2^{n}}\left|X_{\xi_{j}^{m}}-X_{\xi_{j}}\right|=0$ a.s.

Note the same proof gives

Itô formula for semimartingales

Let $M_{t}^{1}, \ldots, M_{t}^{d}$ be martingales with respect to a filtration $\mathcal{F}_{t}, t \geq 0$, $A_{t}^{1}, \ldots, A_{t}^{d}$ adapted processes of bounded variation, $X_{t}=x_{0}+A_{t}+M_{t}$ where $x_{0} \in \mathcal{F}_{0}$, and $f(t, x) \in C^{1,2}$. Then

$$
\begin{aligned}
f\left(t, X_{t}\right)= & f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, X_{s}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} \frac{\partial f}{\partial x_{i}}\left(s, X_{s}\right) d A_{s}^{i}+d M_{s}^{i} \\
& +\sum_{i, j=1}^{d} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(s, X_{s}\right) d\left\langle M^{i}, M^{j}\right\rangle_{s}
\end{aligned}
$$

Multidimensional Levy's theorem

Let $M_{t}^{1}, \ldots, M_{t}^{d}$ be continuous martingales with respect to a filtration $\mathcal{F}_{t}, t \geq 0$, with

$$
\left\langle M^{i}, M^{j}\right\rangle_{t}=\delta_{i j} t
$$

Then $M_{t}^{1}, \ldots, M_{t}^{d}$ is a Brownian motion in \mathbb{R}^{d}

Time change

Let Y_{t} be a stochastic integral

$$
Y_{t}=\int_{0}^{t} g d s+\int_{0}^{t} f d B
$$

where f and g are adapted square integrable processes Let $c_{t}>0$ be another adapted process and define

$$
\beta_{t}=\int_{0}^{t} c_{s} d s
$$

Then β_{t} is adapted and strictly increasing. We call α_{t} its inverse. We can check that

$$
Y_{\alpha_{t}}=\int_{0}^{t} \frac{f}{c} d s+\int_{0}^{t} \frac{g}{\sqrt{c}} d \tilde{B}
$$

for some Brownian motion \tilde{B}. In particular, if we are given a stochastic integral $\int_{0}^{t} f d B$ we can choose $f^{2}=c$ as the rate of our time change and the resulting $Y_{\alpha_{t}}$ is a Brownian motion

Time change

Theorem

Let B_{t} be Brownian motion and \mathcal{F}_{t} its canonical σ-field
Suppose that M_{t} is a square integrable martingale with respect to \mathcal{F}_{t} Let

$$
M_{t}=M_{0}+\int_{0}^{t} f(s) d B_{s}
$$

be its representation in terms of Brownian motion. Suppose that $f^{2}>0$ (i.e. its quadratic variation is strictly increasing)

Let $c=f^{2}$ and define α_{t} as above
Then $M_{\alpha_{t}}$ is a Brownian motion

Example. Stochastic growth model

$$
d X=r X d t+\sigma \sqrt{X} d B
$$

Solution is $X_{t}=r \tau_{t}+B\left(\tau_{t}\right)$ where $\tau_{t}^{\prime}=X_{t}$ Because if

$$
d Y=r d t+\sigma d B
$$

then by time change

$$
X_{t}=Y_{\tau_{t}}
$$

satisfies

$$
d X=r \tau^{\prime} d t+\sigma \sqrt{\tau^{\prime}} d B
$$

Here's a funny trick to solve

$$
d X=\sigma \sqrt{X} d B
$$

Let $\phi=\phi(t)$ be deterministic and look at

$$
\begin{gathered}
Y(t)=e^{-X(t) \phi(T-t)} \\
d Y=\left(\dot{\phi}+\frac{\sigma^{2}}{2} \phi^{2}\right) Y d t-\phi Y \sigma \sqrt{X} d B
\end{gathered}
$$

So if $\dot{\phi}=-\frac{\sigma^{2}}{2} \phi^{2}, \phi(0)=\lambda$ then

$$
E\left[e^{-\lambda X(T)}\right]=e^{-X(0) \phi(T)}
$$

Called Duality Great if it works.

Example. Cox-Ingersol-Ross model

The interest rate $r(t)$ is assumed to satisfy the equation

$$
d r(t)=(\alpha-\beta r(t)) d t+\sigma \sqrt{r(t)} d B(t)
$$

Note that the Lipschitz condition is not satisfied, but existence/uniqueness holds by the stronger theorem we did not prove If $d=4 \alpha / \sigma^{2}$ is a positive integer, then we can find a solution as follows: Let $B_{1}(t), B_{2}(t), \ldots, B_{d}(t)$ be d independent Brownian motions and let $X_{1}(t), X_{2}(t), \ldots, X_{d}(t)$ be the solutions of the Langevin equations

$$
d X_{i}=-\alpha X_{i} d t+\sigma d B_{i}, \quad i=1, \ldots, d
$$

In other words, $X_{1}(t), X_{2}(t), \ldots, X_{d}(t)$ are d independent Ornstein-Uhlenbeck processes

Example. Cox-Ingersol-Ross model

 $r(t)=X_{1}^{2}(t)+\cdots+X_{d}^{2}(t), \quad X_{1}(t), X_{2}(t), \ldots, X_{d}(t)$ indep O-U.$$
\begin{gathered}
d r(t)=(\alpha-\beta r(t)) d t+\sigma \sqrt{r(t)}\left\{\sum_{i=1}^{d} \frac{X_{i}(t)}{\sqrt{r(t)}} d B_{i}(t)\right\} . \\
d \tilde{B}(t)=\sum_{i=1}^{d} \frac{X_{i}(t)}{\sqrt{r(t)}} d B_{i}(t)
\end{gathered}
$$

$\tilde{B}(t)$ is a martingale with quadratic variation

$$
d \tilde{B} d \tilde{B}=\sum_{i, j=1}^{d} \frac{X_{i}(t) X_{j}(t)}{r(t)} d B_{i}(t) d B_{j}(t)=\sum_{i=1}^{d} \frac{X_{i}^{2}(t)}{r(t)} d t=d t
$$

$\Rightarrow \tilde{B}(t)$ Brownian motion

$$
d r(t)=(\alpha-\beta r(t)) d t+\sigma \sqrt{r(t)} d \tilde{B}(t)
$$

The type of solutions dealt with in the existence/uniqueness theorem are strong solutions

This means that you are given the Brownian motion $B(t)$ and asked to come up with a solution $X(t)$ of the stochastic differential equation $d X=b d t+\sigma d B$.

A weak solution is when you just find some Brownian motion $\tilde{B}(t)$ for which you can solve the equation $d X=b d t+\sigma d \tilde{B}$.

Example. Cox-Ingersol-Ross.

If $d=1$ then $\tilde{B}(t)=B_{1}(t)$ so we have a strong solution
But if $d=2,3, \ldots$ then all we have is a weak solution, because given a Brownian motion $B(t)$ it is not at all clear how to find $B_{1}(t), \ldots, B_{d}(t)$ for which $d B(t)=\sum_{i=1}^{d} \frac{X_{i}(t)}{\sqrt{r(t)}} d B_{i}(t)$.

Diffusion process as probability measure on $C([0, \infty))$

Brownian motion=collection of rv's $B_{t}, t \geq 0$ on (Ω, \mathcal{F}, P)

Brownian motion=probability measure P on $C([0, \infty))$
If \mathcal{A} is a (measurable) subset of continuous functions, then $P(\mathcal{A})$ is just the probability that a Brownian path falls in that subset
Same for any diffusion.If $X(t)$ is the solution of the stochastic differential equation $d X(t)=b(t, X(t)) d t+\sigma(t, X(t)) d B(t), X(0)=x$ then we can let $P_{X}^{a, b}$ denote the probability measure on the space of continuous functions with

$$
P_{X}^{a, b}(\mathcal{A})=\operatorname{Prob}(X(\cdot) \in \mathcal{A}) \quad a=\sigma \sigma^{\top}
$$

Question:What is the relation of $P_{x}^{a, b}$ for different x, a, b ?
(1) If $x_{1} \neq x_{2}$ then $P_{x_{1}}^{a, b} \perp P_{x_{2}}^{a, b}$.
(2) The quadratic variation

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{\left\lfloor 2^{n} T\right\rfloor}\left|X\left(\frac{i+1}{2^{n}}\right)-X\left(\frac{i}{2^{n}}\right)\right|^{2}=\int_{0}^{T} a(t, X(t)) d t \quad \text { a.s. } P_{X}^{a, b}
$$

Hence if $a_{1} \neq a_{2}, P_{x}^{a_{1}, b} \perp P_{x}^{a_{2}, b}$
(3) To see what happens if we change b, let $d X_{i}(t)=b_{i} d t+\sigma d B(t)$, $i=1,2$

$$
\begin{aligned}
& \frac{P\left(X_{1}\left(t_{1}\right) \in d x_{1}, \ldots, X_{1}\left(t_{n}\right) \in d x_{n}\right)}{P\left(X_{2}\left(t_{1}\right) \in d x_{1}, \ldots, X_{2}\left(t_{n}\right) \in d x_{n}\right)} \\
& =e^{-\sum_{i=0}^{n-1} \frac{\left(x_{i+1}-x_{i}-b_{1}\left(t_{i+1}-t_{i}\right)\right)^{2}-\left(x_{i+1}-x_{i}-b_{2}\left(t_{i+1}-t_{i}\right)\right)^{2}}{2 \sigma^{2}\left(t_{i+1}-t_{i}\right)}} d x_{1} \cdots d x_{n} \\
& =e^{Z} d x_{1} \cdots d x_{n}
\end{aligned}
$$

$$
\frac{P\left(X_{1}\left(t_{1}\right) \in d x_{1}, \ldots, X_{1}\left(t_{n}\right) \in d x_{n}\right)}{P\left(X_{2}\left(t_{1}\right) \in d x_{1}, \ldots, X_{2}\left(t_{n}\right) \in d x_{n}\right)}=e^{Z} d x_{1} \cdots d x_{n}
$$

$$
\begin{aligned}
Z= & -\sum_{i=0}^{n-1} \frac{\left(x_{i+1}-x_{i}-b_{1}\left(t_{i+1}-t_{i}\right)\right)^{2}-\left(x_{i+1}-x_{i}-b_{2}\left(t_{i+1}-t_{i}\right)\right)^{2}}{2 \sigma^{2}\left(t_{i+1}-t_{i}\right)} \\
= & -\sum_{i=0}^{n-1} \sigma^{-1}\left(b_{2}-b_{1}\right) \sigma^{-1}\left(x_{i+1}-x_{i}-b_{2}\left(t_{i+1}-t_{i}\right)\right) \\
& -\frac{1}{2} \sum_{i=0}^{n-1}\left(\sigma^{-1}\left(b_{2}-b_{1}\right)\right)^{2}\left(t_{i+1}-t_{i}\right) \\
& \xrightarrow{n \rightarrow \infty} \quad-\int_{0}^{t} \sigma^{-1}\left(b_{2}-b_{1}\right) d B(s)-\frac{1}{2} \int_{0}^{t}\left(\sigma^{-1}\left(b_{2}-b_{1}\right)\right)^{2} d s
\end{aligned}
$$

Cameron-Martin-Girsanov formula

For each x the measure $P_{x}^{a, b}$ is absolutely continuous on \mathcal{F}_{t} with respect to the measure $P_{X}^{a, 0}$ and

$$
\left.\frac{d P_{X}^{a, b}}{d P_{X}^{a, 0}}\right|_{\mathcal{F}_{t}}=\exp \left\{\int_{0}^{t} a^{-1}\left(X_{s}\right) b\left(X_{s}\right) d X_{s}-\frac{1}{2} \int_{0}^{t} b\left(X_{s}\right) a^{-1}\left(X_{s}\right) b\left(X_{s}\right) d s\right\}
$$

Proof

We want to show is if we define a measure

$$
Q(A)=\int_{A} \exp \left\{\int_{0}^{t} a^{-1} b d X_{s}-\frac{1}{2} \int_{0}^{t} a^{-1} b^{2} d s\right\} d P_{x_{0}}^{a, 0}
$$

then Q is a diffusion with parameters a and b in other words, for each λ,

$$
\exp \left\{\lambda\left(X_{t}-X_{0}-\int b d s\right)-\frac{\lambda^{2}}{2} \int_{0}^{t} a d s\right\}
$$

is a martingale with respect to Q

Proof.

$$
\begin{gathered}
Y_{t}=\int_{0}^{t}\left(\lambda+a^{-1} b\right) d X_{s}=\int_{0}^{t}\left(\lambda+a^{-1} b\right) \sigma d B_{s} . \\
e^{Y_{t}-Y_{0}-\frac{1}{2} \int_{0}^{t} a\left(\lambda+a^{-1} b\right)^{2} d s}=\text { martingale w.r.t. } P_{\chi_{0}}^{a, 0}
\end{gathered}
$$

$e^{\lambda\left(X_{t}-X_{0}-\int_{0}^{t} b d s\right)-\frac{\lambda^{2}}{2} \int_{0}^{t} a d s+\int_{0}^{t} a^{-1} b d X_{s}-\frac{1}{2} \int_{0}^{t} a^{-1} b^{2} d s}=$ martingale w.r.t. $P_{x_{0}}^{a, 0}$

$$
\begin{gathered}
e^{\lambda\left(X_{t}-X_{0}-\int_{0}^{t} b d s\right)-\frac{\lambda^{2}}{2} \int_{0}^{t} a d s}=\text { martingale w.r.t. } Q \\
d Q=e^{\int_{0}^{t} a^{-1} b d X_{s}-\frac{1}{2} \int_{0}^{t} a^{-1} b^{2} d s} d P_{x_{0}}^{a, 0}
\end{gathered}
$$

"Solution" of one dimensional stochastic differential equations

Suppose you want to solve the one dimensional stochastic differential equation

$$
d X(t)=\sigma(t, X(t)) d B(t)+b(t, X(t)) d t
$$

By Cameron-Martin-Girsanov, you could instead solve

$$
d Z(t)=\sigma(t, Z(t)) d B(t)
$$

and then change to an equivalent measure which will correspond to the solution of $X(t)$
Define $t(\tau)$ by

$$
\begin{gathered}
\tau(t)=\int_{0}^{t} \sigma^{2}(u, Y(u)) d u \\
B(\tau)=Z(t(\tau))
\end{gathered}
$$

is a Brownian motion and $Z(t)=B(\tau(t))$.
Only works in $d=1$

Brownian motion as the limit of random walks

 X_{1}, X_{2}, \ldots iid Bernoulli $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=1 / 2$$$
S_{n}=X_{1}+\cdots+X_{n}
$$

$B_{n}(t)=\frac{1}{\sqrt{n}} S_{\lfloor t n\rfloor}$ Takes steps $\pm \frac{1}{\sqrt{n}}$ at times $\frac{1}{n}, \frac{2}{n}, \ldots$
Or $\bar{B}_{n}(t)=$ polygonalized version. Almost the same but continuous

$$
B_{n}(t) \xrightarrow{n \rightarrow \infty} \text { Brownian motion } B(t)
$$

What does it mean for stochastic processes to converge?

$$
\operatorname{dist}\left(B_{n}\left(t_{1}\right), \ldots, B_{n}\left(t_{k}\right)\right) \rightarrow \operatorname{dist}\left(B\left(t_{1}\right), \ldots, B\left(t_{k}\right)\right) \quad k=1,2,3, \ldots
$$

Convergenence of finite dimesional distributions Immediate from (multidimensional) central limit theorem Same for $\bar{B}_{n}(t)$
$P_{n}=$ measure on $C[0, T]$ corresponding to $\bar{B}_{n}(t), 0 \leq t \leq T$

Invariance principle (Donsker's Theorem)

$$
P_{n} \Rightarrow P
$$

Much stronger than convergence of finite dimensional distributions

Examples

©

$$
\operatorname{dist}\left(\max _{0 \leq m \leq n} \frac{1}{\sqrt{n}} S_{m}\right) \rightarrow \operatorname{dist}\left(\sup _{0 \leq t \leq 1} B(t)\right)
$$

(2)

$$
\operatorname{dist}\left(n^{-1-\frac{k}{2}} \sum_{m=1}^{n} S_{m}^{k}\right) \rightarrow \operatorname{dist}\left(\int_{0}^{1} B^{k}(t) d t\right)
$$

Brownian motion with variance σ^{2} and drift b as the limit of random walks
$X_{n}(t)$ jumps $\frac{1}{\sqrt{n}} \sigma+\frac{1}{n} b$ or $-\frac{1}{\sqrt{n}} \sigma+\frac{1}{n} b$ with probabilities $1 / 2$ at times $\frac{1}{n}, \frac{2}{n}, \ldots$

$$
\begin{gathered}
X_{n}(t)-b \frac{\lfloor n t\rfloor}{n}=\sigma B_{n}(t) \\
X_{n}(t) \rightarrow \sigma B(t)+b t
\end{gathered}
$$

General local diffusivity $\sigma^{2}(t, x)$ and drift $b(t, x)$ $X_{n}(t)$ jumps

$$
\frac{1}{\sqrt{n}} \sigma\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right)+\frac{1}{n} b\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right) \quad \text { or } \quad-\frac{1}{\sqrt{n}} \sigma\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right)+\frac{1}{n} b\left(\frac{i}{n}, X_{n}\left(\frac{i}{n}\right)\right)
$$

with probabilities $1 / 2$ at times $\frac{i}{n}, i=1,2, \ldots \quad X_{n}(t) \rightarrow X(t)$

$$
d X(t)=\sigma(t, X(t)) d B(t)+b(t, X(t)) d t
$$

But how to prove it?

Here's another proof that random walks converge to Brownian motions, which does generalize
Recall $B_{n}(t)=\frac{1}{\sqrt{n}} S_{\lfloor t n\rfloor}$ where $S_{n}=X_{1}+\cdots+X_{n}$
Let $f \in C^{2}$

$$
\begin{gathered}
f\left(B_{n}(t)\right)=\frac{1}{n} \sum_{i=0}^{\lfloor t n\rfloor-1} L_{n} f\left(B_{n}\left(\frac{i}{n}\right)=\right.\text { Martingale } \\
L_{n} f(x)=\frac{1}{2} n\left(f\left(x+n^{-1 / 2}\right)-2 f(x)+f\left(x-n^{-1 / 2}\right)\right) \\
L_{n} f(x) \rightarrow \frac{1}{2} f^{\prime \prime}(x) \\
\frac{1}{n} \sum_{i=0}^{\lfloor t n\rfloor-1} L_{n} f\left(B_{n}\left(\frac{i}{n}\right) \rightarrow \frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s\right.
\end{gathered}
$$

$f(B(t))-\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s=$ martingale $\Rightarrow B(t)$ Brownian motion

Really one needs to show that P_{n} are precompact as a set of probability measures. It is similar to the proof that Brownian motion is continuous, but you just use the martingale formulation directly. The details are long, but the final result is

Theorem

Suppose that
(1) $n \int_{|y-x| \leq 1}\left(y_{i}-x_{i}\right)\left(y_{j}-x_{j}\right) p_{1 / n}(x, d y) \rightarrow a_{i j}(x)$ uniformly on compact sets
(2) $n \int_{|y-x| \leq 1}\left(y_{i}-x_{i}\right) p_{1 / n}(x, d y) \rightarrow b_{i}(x)$ uniformly on compact sets
(3) $n p_{1 / n}\left(x, B(x, \epsilon)^{C}\right) \rightarrow 0$ uniformly on compact sets, for each $\epsilon>0$ where $a(x)$ and $b(x)$ are continuous. Suppose that we have weak uniqueness for the stochastic differential equation

$$
d X=\sigma(X) d B+b(X) d t
$$

and let P denote the measure on $C[0, T]$ corresponding to $X(t)$, $0 \leq t \leq T$. Then $P_{n} \Rightarrow P$

