
Martingale representation theorem
Ω = C[0, T ], FT = smallest σ-field with respect to which Bs are all
measurable, s ≤ T , P the Wiener measure , Bt = Brownian motion
Mt square integrable martingale with respect to Ft

Then there exists σ(t , ω) which is
1 progressively measurable
2 square integrable
3 B([0,∞))×F mble

such that

Mt = M0 +

∫ t

0
σ(s)dBs

() Stochastic Calculus March 28, 2007 1 / 23



Lemma
A = set of all linear combinations of random variables of the form

e
R T

0 hdB− 1
2

R T
0 h2dt , h ∈ L2([0, T ])

A is dense in L2(Ω,FT , P)

Proof
Suppose g ∈ L2(Ω,FT , P) is orthogonal to all such functions

We want to show that g = 0

By an easy choice of simple functions h we find that for any
λ1, . . . , λn ∈ R and t1, . . . , tn ∈ [0, T ],

EP [geλ1Bt1+···+λnBtn ] = 0

lhs real analytic in λ and hence has an analytic extension to λ ∈ Cn
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Since EP [geλ1Bt1+···+λnBtn ] is analytic and vanishes on the real axis, it is
zero everywhere. In particular

EP [gei(y1Bt1+···+ynBtn )] = 0

Suppose φ ∈ C∞
0 (Rn)

φ̂(y) = (2π)−n/2
∫

Rn
φ(x)e−ix ·ydx

Fourier inversion:

φ(x) = (2π)−n/2
∫

Rn
φ̂(y)eix ·ydy

EP [gφ(Bt1 , . . . , Btn)] = (2π)−n/2
∫

Rn
φ̂(y)EP [eiy1Bt1+···+ynBtn )]dy = 0

Hence g is orthogonal to fns of form φ(Bt1 , . . . , Btn) where φ ∈ C∞
0 (Rn)

Dense in L2(Ω,FT , P) ⇒ g = 0
() Stochastic Calculus March 28, 2007 3 / 23



Lemma
F ∈ L2(Ω,FT , P) There exists a unique f (t , ω) which is

1 progressively measurable
2 square integrable
3 B([0,∞))×F measurable

such that

F (ω) = E [F ] +

∫ T

0
fdB.

Proof of Uniqueness
suppose

F = E [F ] +

∫ T

0
f1dB = E [F ] +

∫ T

0
f2dB

⇒
∫ T

0
(f2 − f1)dB = 0 ⇒

∫ T

0
E [(f2 − f1)2]dt = 0 ⇒ f2 = f1
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Proof of existence

First we prove it if F is of the form F = e
R T

0 hdB− 1
2

R T
0 h2ds

Defining Ft = e
R t

0 hdB− 1
2

R t
0 h2ds gives

dF = hFdB, F0 = 1,

so

Ft = 1 +

∫ t

0
FshdB.

Plugging in t = T gives the result.

If F is a linear combination of such functions the result follows by
linearity
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Proof of existence for F ∈ L2(Ω,FT , P)

Fn ∈ L2(Ω,FT , P) with Fn → F and

Fn = E [Fn] +

∫ T

0
fndB.

E [Fn] → E [F ], so wlog E [Fn] = E [F ] = 0

E [(Fn − Fm)2] =

∫ T

0
E [(fn − fm)2]dt → 0 as n, m →∞

⇒ fn Cauchy in L2([0, T ]× Ω, dx × dP).

Let f be the limit. Taking limits we have

F = E [F ] +

∫ T

0
fdB.
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Proof of the martingale representation theorem
By previous lemma, for each t we have σt(s, ω) such that

Mt = E [Mt ] +

∫ t

0
σt(s)dBs

Let t2 > t1

Mt1 = E [Mt2 | Ft1 ]∫ t1

0
σt2(s)dBs =

∫ t1

0
σt1(s)dBs

Uniqueness ⇒ σt1 = σt2
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Quadratic variation of Xt =
∫ t

0 σ(s)dBs

eλ
R t

0 σ(s)dBs−λ2
2

R t
0 σ2(s)ds =martingale

E [eλ
R ti+1

ti
σ(s)dBs−λ2

2

R ti+1
ti

σ2(s)ds | Fti ] = 0

E [Z (ti , ti+1) | Fti ] = 0, Z (ti , ti+1) = (

∫ ti+1

ti
σ(s)dBs)

2−
∫ ti+1

ti
σ2(s)ds

E [{Z (ti , ti+1)}2 − 4(

∫ ti+1

ti
σ2(s)ds)2 | Fti ] = 0

E [(
∑

i

Z (ti , ti+1))
2] ≤ 4E [(

∑
i

(

∫ ti+1

ti
σ2(s)ds)2] → 0

〈Xt , Xt〉 =

∫ t

0
σ2(s, ω)ds
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Levy’s Theorem
Let Xt be a process adapted to a filtration Ft which

1 has continuous sample paths
2 is a martingale
3 has quadratic variation t

Then Xt is a Brownian motion
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Proof of Levy’s theorem
Enough to show that for each λ,

E [eiλ(Xt−Xs) | Fs] = e−
1
2 λ2(t−s)

Call Mt = eiλXt+
1
2 λ2t , tj = s + j

2n (t − s)

Mt −Ms =
2n∑

j=1

Mtj −Mtj−1

=
2n∑

j=1

iλMtj−1(Xtj − Xtj−1)−
1
2
λ2Mξj [(Xtj − Xtj−1)

2 − (tj − tj−1)]

E [Mtj−1(Xtj − Xtj−1) | Fs] = E [E [Mtj−1(Xtj − Xtj−1) | Ftj−1 ] | Fs]

= E [Mtj−1E [(Xtj − Xtj−1) | Ftj−1 ] | Fs] = 0
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Proof of Levy’s theorem

Fix m. Let ξm = max{ i
2m : i

2m ≤ ξ}

lim
n→∞

2n∑
j=1

Mξm
j
[(Xtj − Xtj−1)

2 − (tj − tj−1)] = 0

So we only have to show

lim
n→∞

2n∑
j=1

[Mξm
j
−Mξj ](Xtj − Xtj−1)

2 = 0

Would follow from

lim
n→∞

2n∑
j=1

(Xξm
j
− Xξj )(Xtj − Xtj−1)

2 = 0

Left hand side = t limn→∞ max1≤j≤2n |Xξm
j
− Xξj | = 0 a.s.
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Note the same proof gives

Itô formula for semimartingales

Let M1
t , . . . , Md

t be martingales with respect to a filtration Ft , t ≥ 0,
A1

t , . . . , Ad
t adapted processes of bounded variation, Xt = x0 + At + Mt

where x0 ∈ F0, and f (t , x) ∈ C1,2. Then

f (t , Xt) = f (0, X0) +

∫ t

0

∂f
∂t

(s, Xs)ds +
d∑

i=1

∫ t

0

∂f
∂xi

(s, Xs)dAi
s + dM i

s

+
d∑

i,j=1

∫ t

0

∂2f
∂xi∂xj

(s, Xs)d〈M i , M j〉s

Multidimensional Levy’s theorem

Let M1
t , . . . , Md

t be continuous martingales with respect to a filtration
Ft , t ≥ 0, with

〈M i , M j〉t = δij t

Then M1
t , . . . , Md

t is a Brownian motion in Rd
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Time change
Let Yt be a stochastic integral

Yt =

∫ t

0
gds +

∫ t

0
fdB

where f and g are adapted square integrable processes
Let ct > 0 be another adapted process and define

βt =

∫ t

0
csds.

Then βt is adapted and strictly increasing. We call αt its inverse. We
can check that

Yαt =

∫ t

0

f
c

ds +

∫ t

0

g√
c

dB̃

for some Brownian motion B̃. In particular, if we are given a stochastic
integral

∫ t
0 fdB we can choose f 2 = c as the rate of our time change

and the resulting Yαt is a Brownian motion
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Time change

Theorem
Let Bt be Brownian motion and Ft its canonical σ-field

Suppose that Mt is a square integrable martingale with respect to Ft

Let

Mt = M0 +

∫ t

0
f (s)dBs

be its representation in terms of Brownian motion. Suppose that f 2 > 0
(i.e. its quadratic variation is strictly increasing)

Let c = f 2 and define αt as above

Then Mαt is a Brownian motion
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Example. Stochastic growth model

dX = rXdt + σ
√

XdB

Solution is Xt = rτt + B(τt) where τ ′t = Xt
Because if

dY = rdt + σdB

then by time change
Xt = Yτt

satisfies
dX = rτ ′dt + σ

√
τ ′dB
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