Stochastic Calculus

Lecture 1 : Brownian motion

Stochastic processes

A stochastic process is an indexed set of random variables

$$
X_{t}, \quad t \in T
$$

i.e. measurable maps from a probability space (Ω, \mathcal{F}, P) to a state space $(E, \mathcal{E}) T=$ time

In this course $T=\mathbb{R}_{+}$or \mathbb{R} (continuous time)
But you could have $T=\mathbb{N}_{+}$or \mathbb{N} (discrete time), or other things
In this course $E=\mathbb{R}$ or $\mathbb{R}^{d} \quad \mathcal{E}=\mathcal{B}\left(\mathbb{R}^{d}\right)=$ Borel σ-field $=$ smallest σ-field containing open sets
Fix $\omega \in \Omega . X_{t}(\omega)$ is a function of $t \in \mathbb{R}_{+}$.
So X_{t} is a random function.
In this course we will be studying random continuous functions

Real random variables

A probability space (Ω, \mathcal{F}, P) consists of a set Ω, on which there is a σ-field \mathcal{F}

- if $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$
- if $A_{i} \in \mathcal{F}, i=1,2,3, \ldots$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$
and a probability measure
- $0=P(\emptyset) \leq P(A) \leq P(\Omega)=1, A \in \mathcal{F}$
- if $A_{i} \in \mathcal{F}, i=1,2,3, \ldots$ are disjoint, $A_{i} \cap A_{j}=\emptyset$, then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$
A (real-valued) random variable is a measurable map

$$
X:(\Omega, \mathcal{F}, P) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

Distribution function $F(x)=P(X \leq x)$
Measure $\mu(A)=P(X \in A)$
Characteristic function $\varphi(t)=E\left[e^{i t x}\right]=\int e^{i t x} d F(x)$

Random variables in \mathbb{R}^{n}

$$
\begin{aligned}
& \quad n \text { random variables } X_{1}, \ldots, X_{n} \\
& =\text { random } n \text {-vector } X=\left(X_{1}, \ldots, X_{n}\right) \\
& =\text { random element of } \mathbb{R}^{n}
\end{aligned}
$$

Distribution function

$$
F\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

Measure $\mu(A)=P(X \in A)$
Characteristic function $\varphi\left(t_{1}, \ldots, t_{n}\right)=E\left[e^{i t \cdot X}\right]$.

Distribution of a stochastic process

Analogously: Discrete time stochastic process X_{1}, X_{2}, \ldots is a random sequence or a random element of $\prod_{i=1}^{\infty} \mathbb{R}$
Continuous time stochastic process $X_{t}, t \geq 0$ is a random function or a random element of $\Omega=\prod_{t \geq 0} \mathbb{R}$
Family of finite dim. distr.'s, one for each $t_{1}<\cdots<t_{n}$,

$$
\begin{equation*}
F_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{t_{1}} \leq x_{1}, \ldots, X_{t_{n}} \leq x_{n}\right) \tag{1}
\end{equation*}
$$

Consistency: $F_{t_{1}, \ldots, \hat{t}_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)=F_{t_{1}, \ldots, t_{n}}\left(x_{1}, \ldots, \infty, \ldots, x_{n}\right)$
\mathcal{F} generated by cylinder sets $E=\left\{X_{t_{1}}, \ldots, X_{t_{n}} \in A\right\}, A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$
Kolmogorov Extension Theorem
Let $\left\{F_{t_{1}, \ldots, t_{n}}\right\}_{t_{1}, \ldots, t_{n} \in \mathbb{R}^{n}, n=1,2, \ldots}$ be a consistent family of finite dimensional distributions. There is a unique probability measure P on (Ω, \mathcal{F}) satisfying (1).

Gaussian processes

$X \sim \mathcal{N}\left(m, \sigma^{2}\right)$ if X is Gaussian with mean m and variance σ^{2}
$F(x)=\int_{-\infty}^{x} f(y) d y$, density $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} \varphi(t)=e^{i t m-\frac{1}{2} \sigma^{2} t^{2}}$
$X=\left(X_{1}, \ldots, X_{n}\right) \sim \mathcal{N}(m, C)$ if it has n-dimensional density

$$
\frac{1}{\sqrt{2 \pi \operatorname{det} C}} e^{-\frac{1}{2}(x-m)^{\top} C^{-1}(x-m)}
$$

A process is Gaussian if all finite dimensional distributions are Gaussian

Proposition

If $\left(X_{1}, X_{2}\right)$ is Gaussian, then they are independent if and only if they are orthogonal, i.e. $C_{12}=C_{21}=E\left[\left(X_{1}-m_{1}\right)\left(X_{2}-m_{2}\right)\right]=0$.

Brownian motion

Brownian motion $B_{t}, t \geq 0$ is a Gaussian process with independent, stationary increments $B_{t+h}-B_{t}$
Independent increments: $B_{t_{4}}-B_{t_{3}}, B_{t_{2}}-B_{t_{1}}$ independent if $0 \leq t_{1} \leq t_{2} \leq t_{3} \leq t_{4}$
Stationary: $B_{t+h}-B_{t} \stackrel{\text { dist }}{=} B_{s+h}-B_{s}$

$$
B_{t+h}-B_{t} \sim \mathcal{N}(0, h)
$$

$$
\begin{aligned}
& P\left(B_{t_{1}} \leq x_{1}, \ldots, B_{t_{n}} \leq x_{n}\right)= \\
& \int_{-\infty}^{x_{n}} \cdots \int_{-\infty}^{x_{1}} \frac{e^{-\frac{y_{1}^{2}}{2 t_{1}}}}{\sqrt{2 \pi t_{1}}} \frac{e^{-\frac{\left(y_{2}-y_{1}\right)^{2}}{2\left(t_{2}-t_{1}\right)}}}{\sqrt{2 \pi\left(t_{2}-t_{1}\right)}} \cdots \frac{e^{-\frac{\left(y_{n}-y_{n-1}\right)^{2}}{2\left(t_{n}-t_{n-1}\right)}}}{\sqrt{2 \pi\left(t_{n}-t_{n-1}\right)}} d y_{1} \cdots d y_{n}
\end{aligned}
$$

Basic properties of Brownian motion

Mean: $m_{t}=E\left[B_{t}\right]=0$
Covariance: If $s<t$,
$E\left[B_{t} B_{s}\right]=E\left[\left(B_{t}-B_{s}\right) B_{s}\right]+E\left[B_{s}^{2}\right]=E\left[B_{t}-B_{s}\right] E\left[B_{s}\right]+s=s$
B_{t} is Gaussian process with

$$
m_{t}=0 \quad C_{s, t}=E\left[B_{t} B_{s}\right]=\min (s, t)
$$

Proposition

Let $B_{t}, t \geq 0$ be a Brownian motion.
(1) For any $s \geq 0, \tilde{B}_{t}=B_{t+s}-B_{s}, t \geq 0$ is a Brownian motion independent of $B_{u}, u \leq s$
(2) $-B_{t}, t \geq 0$ is a Brownian motion
(3) For any $a, a B_{a^{-2}}, t \geq 0$ is a Brownian motion
(9) $t B_{1 / t}, t \geq 0$ is a Brownian motion.

Continuity of Brownian motion

We will construct Brownian motion directly on $\Omega=C([0,1])$, with its Borel σ-field, under the sup norm $\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)|$.

Lemma
If X is $\mathcal{N}(0,1)$ then $P(|X| \geq a) \leq e^{-a^{2} / 2}$.

Proof.

We use the exponential Tchebyshev's inequality: For $\lambda>0$,

$$
P(|X| \geq a) \leq E\left[e^{\lambda X}\right] / e^{\lambda a}=e^{-\lambda a+\lambda^{2} / 2}
$$

Choose $\lambda=a$.

Continuity of Brownian motion: Haar functions

Definition

Haar basis of $L^{2}[0,1]$

$$
\mathcal{H}_{n, j}(x)=2^{\frac{n+1}{2}}\left\{\mathbf{1}_{\left[\frac{2 j}{2 n+1}, \frac{2 j+1}{2 n+1}\right)}-\mathbf{1}_{\left[\frac{2 j+1}{2 n+1}, \frac{2 i+2}{2 n+1}\right)}\right\}
$$

Integrals are Schauder functions $\mathcal{S}_{n, j}(x)=\int_{0}^{x} \mathcal{H}_{n, j}(y) d y$ Tent of height $2^{-\frac{n+1}{2}}$ between $\frac{2 j}{2^{n+1}}$ and $\frac{2 j+2}{2^{n+1}}$.

Definition

$B_{n}(t)=$ polygonal approx. on the points $0,1 / 2^{n}, 2 / 2^{n}, \ldots, 1$
$B_{n+1}\left(\frac{2 j+1}{2^{m+1}}\right)-B_{n}\left(\frac{2 j+1}{2^{m+1}}\right)=B_{n+1}\left(\frac{2 j+1}{2^{m+1}}\right)-\frac{B_{n+1}\left(\frac{2 j+2}{2^{m+1}}\right)+B_{n+1}\left(\frac{2 j}{2^{m+1}}\right)}{2}$

$$
B_{n+1}(t)-B_{n}(t)=\sum_{j=0}^{2^{n}-1} \xi_{j, n} \mathcal{S}_{j, n}(x) \quad \xi_{j, m} \text { indep } \mathcal{N}(0,1)
$$

Continuity of Brownian motion

Theorem

Brownian motion has continuous sample paths

Proof.

Polygonal approx. $B_{n}(t, \omega)$ is continuous for each ω
Enough to show: $B_{n}(\omega)$ converges uniformly a.s.
i.e. $B(t)=\sum_{m=0}^{\infty} B_{m+1}(t)-B_{m}(t)+B_{0}(t)$ converges uniformly
$B_{n}(t)-B(t)=\sum_{m=n}^{\infty} B_{m+1}(t)-B_{m}(t)$
$\sup _{0 \leq t \leq 1}\left|B_{n}(t)-B(t)\right| \leq \sum_{m=n}^{\infty} \sup _{0 \leq t \leq 1}\left|B_{m+1}(t)-B_{m}(t)\right|$
Need: $\forall \epsilon>0, \exists N(\omega)<\infty$ a.s., such that for all $n \geq N(\omega)$,

$$
\sum_{m=n}^{\infty} \sup _{0 \leq t \leq 1}\left|B_{m+1}(t)-B_{m}(t)\right| \leq \epsilon .
$$

Continuity of Brownian motion: Proof continued

Proof.

$$
\begin{aligned}
& \sup _{0 \leq t \leq 1}\left|B_{m+1}(t)-B_{m}(t)\right|=2^{-\frac{m+1}{2}} \max _{0 \leq j \leq 2^{m}-1}\left|\xi_{j, m}\right| \\
& P\left(2^{-\frac{m+1}{2}} \max _{0 \leq j \leq 2^{m}-1}\left|\xi_{j, m}\right| \geq 2^{-\frac{m}{4}}\right) \leq 2^{m} P\left(2^{-\frac{m+1}{2}}\left|\xi_{0, m}\right| \geq 2^{-\frac{m}{4}}\right) \\
& \leq 2^{m} e^{-2^{m / 2}} \\
& \sum_{n=1}^{\infty} P\left(\sum_{m=n}^{\infty} 2^{-\frac{m+1}{2}} \max _{0 \leq j \leq 2^{m}-1}\left|\xi_{j, m}\right| \geq \sum_{m=n}^{\infty} 2^{-m / 4}\right) \\
& \leq \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} 2^{m} e^{-2^{m / 2}}<\infty
\end{aligned}
$$

Continuity of Brownian motion: Proof continued

Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then almost every ω is in at most finitely many A_{n}.

Proof.

It follows that $\exists N_{1}(\omega)$ s.t. for $n \geq N_{1}(\omega)$

$$
\sum_{m=n}^{\infty} 2^{-\frac{m+1}{2}} \max _{0 \leq j \leq 2^{m}-1}\left|\xi_{j, m}\right| \leq \sum_{m=n}^{\infty} 2^{-m / 4}
$$

$\forall \epsilon$, r.h.s. $\leq \epsilon$ for all $n \geq N_{2}$.

Hölder continuity

f is locally Hölder of order α if for every $L<\infty$

$$
\sup _{0 \leq s<t \leq L} \frac{|f(t)-f(s)|}{|t-s|^{\alpha}}<\infty
$$

Theorem

Let $X_{t}, t \geq 0$ be a stochastic process for which $\exists \gamma, C, \delta>0$,

$$
E\left[\left|X_{t}-X_{s}\right|^{\gamma}\right] \leq C|t-s|^{1+\delta}
$$

Then X_{t} is a.s. locally Hölder continuous of order $\alpha<\delta / \gamma$
Example: Brownian motion is Hölder $\alpha<1 / 2$
$E\left[\left|B_{t}-B_{s}\right|^{2 p}\right]=\int x^{2 p} \frac{e^{-\frac{x^{2}}{2(t-s)}}}{\sqrt{2 \pi(t-s)}} d x=C_{p}|t-s|^{p}$

