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1. INTRODUCTION

My research interests lie in the intersection of commutative algebra, representation theory and
homological algebra. In particular, my major research interest is (maximal) Cohen-Macaulay rep-
resentation theory. This is an active and growing research subject with connections to physics,
algebraic geometry and singularity theory.

Similar to the classical theory of group representations where a group is studied by its action on
vector spaces, studying the action of rings on modules can reveal facts about rings which can not
otherwise be detected. So, my main interest is to study special modules over special rings which
carry useful information about the geometry and singularities. Cohen-Macaulay representation
theory studies maximal Cohen-Macaulay modules over Cohen-Macaulay rings. I further focus on
Gorenstein rings which form a subset of Cohen-Macaulay rings. I will briefly explain these objects
and try to paint a framework of my projects before I talk about them.

Let R be a commutative Noetherian ring with finite Krull dimension. Assuming that R is also local,
we call it Gorenstein if it has finite injective dimension as a module over itself. We say that R is
Gorenstein if every localization of it is Gorenstein. Gorenstein rings are ubiquitous [Bas63, Hun99).
The examples include regular rings, hypersurface rings and more generally complete intersection
rings. The corresponding geometric objects behave well. For instance, they are locally equidi-
mensional and connected in codimension 2 as Gorenstein rings are Cohen-Macaulay rings [Yos90].
On top of this, they have nice duality properties. For instance, in the derived category dualizing
into R is actually an equivalence. The notion of Gorenstein rings can also be extended to the
noncommutative world.

On Gorenstein rings, I study a special class of modules called maximal Cohen-Macaulay mod-
ules. We say that a finitely generated module M over a Gorenstein ring is maximal Cohen-Macaulay
if its depth is equal to the dimension of the ring R. This is equivalent to the homological property
that Ext%(M ,R) = 0 for every ¢ > 0. It turns out that this is also equivalent to being a syzygy
module of arbitrarily high order. Every finitely generated projective module is maximal Cohen-
Macaulay. However, the converse is true if and only if R is regular. In this sense, the category
of maximal Cohen-Macaulay modules MCM(R) measures how singular the corresponding space
is.



For any M, N in MCM(R), we let P(M,N) to be the submodule of R-linear maps from M to N
which factor through a projective module and we define Homp (M, N) to be the quotient module
Homp(M,N)/P(M,N). The quotient category MCM(R) has the same objects as MCM(R) and
the Hom-set between two modules M and N is given by Homp (M, N). It is usually called the
stable category of maximal Cohen-Macaulay modules. In this category, every projective module is
identified with the zero object. Hence, MCM(R) is trivial if and only if R is regular. MCM(R) has
a triangulated category structure given by the syzygy functor.

In [Orl09] Orlov defines the graded triangulated category of singularities of the cone over a projective
variety and connects it to the bounded derived category of coherent sheaves on the base of the cone.
In the Calabi-Yau case, this connection is an equivalence of categories. Moreover, the singularity
category is equivalent to the stable category of graded maximal Cohen-Macaulay modules over the
coordinate ring of the cone. The ungraded counterpart of this equivalence is due to Buchweitz
[Buc]. In the language of physics, this result says that the category of graded D-branes of
type B in Landau-Ginzburg models with homogeneous superpotential W is equivalent to the stable
category of graded maximal Cohen-Macaulay modules over the hypersurface defined by W.

Resolution of singularities is a fundamental concept in classical algebraic geometry. A resolution
of singularities replaces a singular algebraic variety by a smooth one that is isomorphic on a dense
open set. In terms of algebraic geometry, this is a very useful tool. It allows the reduction of
constructions and calculations to the case of a smooth variety. However, from the point of view of
commutative algebra, this can seem like the end of the story. Indeed, a resolution of singularities
of an affine scheme is almost never an affine scheme. So, this process replaces a well understood
object with a more mysterious one from this point of view. There are several ways one can attempt
to fix this problem and one of them is to allow noncommutative rings to enter the scene. However,
in general the techniques of commutative algebra do not work in the noncommutative world. For
instance, localization is a problem. However, there is a very nice class of rings where one might
hope for a satisfactory homological theory.

Suppose R is a Gorenstein local normal domain. Then, a finitely generated R-algebra A is called
a noncommutative crepant resolution if it has finite global dimension, is maximal Cohen-
Macaulay as an R-module and is isomorphic to the endomorphism ring of a reflexive R-module.
For a survey on noncommutative crepant resolutions, see [Leul2]. This is where Cohen-Macaulay
representation theory enters the scene in noncommutative algebraic geometry.

2. ON THE ANNIHILATION OF COHOMOLOGY

The main theme of my thesis is a study of cohomology annihilators over Gorenstein rings. A
preprint version can be found at [Esel8]. A ring element in a commutative Noetherian ring is
called a cohomology annihilator if it annihilates all nth extension groups between any two finitely
generated modules where n is sufficiently large.

Cohomology annihilators have been studied by several mathematicians in the last two decades
[Buc, Wan94] and a theory of the cohomology annihilator ideal has been developed by Iyengar and
Takahashi in a series of papers with applications to generation of triangulated categories [IT16b,
IT14, IT16al. In particular, among other significant results, Iyengar and Takahashi find bounds



on the Rouquier dimension of derived (and singularity) categories of a large class of commutative
rings.

Lemma 2.1. [Esel8, Lemma 2.3.] Over Gorenstein rings, the cohomology annihilator ideal can be
seen as the annihilator of the stable category of mazrimal Cohen-Macaulay modules.

Hence, I study the annihilation of cohomology over commutative Gorenstein rings via maximal
Cohen-Macaulay modules. In this setting, a ring element is a cohomology annihilator if and only if
it annihilates the stable endomorphism ring of every finitely generated (indecomposable) maximal
Cohen-Macaulay module. We will call the annihilator of the stable endomorphism ring of a module
the stable annihilator of that module. Note that if the ring has finite global dimension (i.e. if
the corresponding geometric object has no singularities) this ideal is equal to the ring. Hence, the
cohomology annihilator ideal is an important invariant in singularity theory.

Cohomology Annihilators in Dimension One. The first main result of [Esel8] is to describe
the cohomology annihilator of one dimensional Gorenstein rings.

Theorem 2.2. [Esel8, Theorem 4.4] For a one dimensional reduced complete Gorenstein local ring,
the cohomology annihilator ideal coincides with the conductor ideal of the ring.

For a large class of commutative rings, the cohomology annihilator ideal ca(R) contains the Ja-
cobian ideal Jac(R) of the ring [Wan94, Buc, IT16a]. The starting point for this project was an
observation due to Ragnar-Olaf Buchweitz that there is a relation between vector space dimensions
of R/ca(R) and R/Jac(R). Theorem 2.2 explains this observation via Milnor-Jung formula for
algebraic plane curves. Building on top of Theorem 2.2, I am able to generalize this formula to
double branched covers of these curves.

Theorem 2.3. [Esel8, Theorem 5.6.]Let R = k[x,y]/(f) be the coordinate ring of a reduced curve
singularity. For S = k[z,y,21,...,2]/(f + 2} + ...+ 2%), we have
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where r is the number of branches of the curve f at its singular point.

I also have found examples of hypersurfaces where the above formula does not hold.

Question 2.4. Are there interesting families of hypersurfaces where the above-mentioned formula
holds true? In particular, can we compare the codimension of the cohomology annihilator ideal
with the codimension of the Jacobian ideal?

Computations suggest that if the ring under consideration is the coordinate ring of the cone over a
smooth elliptic curve embedded in the projective plane, then the codimension of the Jacobian ideal
is twice that of the cohomology annihilator ideal. This is one direction in which I am currently
working.

Cohomology Annihilators and Noncommutative Resolutions. The key lemma to achieve
Theorem 2.2 is to observe that the conductor ideal coincides with the stable annihilator of the



normalization of the ring. The normalization, in this setting, is finitely generated, maximal Cohen-
Macaulay and is of finite global dimension.

Question 2.5. Let R be a Gorenstein ring and A be a finitely generated R-algebra of finite global
dimension. Suppose also that A is maximal Cohen-Macaulay as an R-module. We know that the
stable annihilator of A contains the cohomology annihilator ideal by Lemma 2.1. Is the converse
true?

The second main result of [Esel8] is that the converse is at least geometrically true.

Theorem 2.6. [Esel8, Theorem 6.5.] Let R be a Gorenstein ring and A be an R-algebra of finite
global dimension 6. Suppose that A contains R as a direct summand. Then, (anngEndp(A))0+! is
contained in the cohomology annihilator ideal.

That is, the cohomology annihilator ideal of R and the stable annihilator of A have the same radical.
In every example that we have computed so far, these two ideals in fact are equal.

If A is, moreover, the endomorphism ring of a maximal Cohen-Macaulay module M; then the square
of the stable annihilator of M is contained in the stable annihilator of A. Again, in all examples we
computed, there is an equality between the stable annihilator of M and the cohomology annihilator
ideal of R.

Motivated from cluster theory and tilting theory, cluster tilting objects in exact or triangulated
categories are ubiquitous [Iyal8]. For us, the importance of a d-cluster tilting maximal Cohen-
Macaulay is that its endomorphism ring -called the d-Auslander algebra- gives a noncommutative
crepant resolution.

Question 2.7. Let M be a d-cluster tilting object in the category of maximal Cohen-Macaulay
R-modules. We know that its stable annihilator - i.e. the annihilator of its stable d-Auslander
algebra - contains the cohomology annihilator ideal from Lemma 2.1. Is the converse true?

Hochschild Cohomology and Annihilation of the Singularity Category. For any asso-
ciative algebra A, one can associate the Hochschild homology algebra HH, (A, A), the Hochschild
cohomology algebra HH*(A, A) and the stable Hochschild cohomology algebra HH*(A, A). They
are derived invariants of the algebra A, in the sense that if two algebras have equivalent derived
categories, then the above constructions are isomorphic.

Let R be a commutative Gorenstein algebra of Krull dimension d. Then one can construct a long
exact sequence

...—HHy_;(R,R) —» HHY(R,R) — HH(R,R) — ...

Given any M in MCM(R), its stable endomorphism ring is a module over HH’(R, R) in a natural
way. Using the above long exact sequence, one can see that the image of the map HHy(R, R) —
HH’(R, R) = R annihilates the stable endomorphism ring of M. As M is arbitrary, one can see
that the image of this map is contained in the cohomology annihilator ideal of R.

Hence, I also think about the following type of questions:



Question 2.8. Can we compute the image of the map HHy(R,R) — HH%(R,R)? If R is a
hypersurface ring, then the answer is yes: the image is exactly equal to the Jacobian ideal of
R, generated by the partial derivatives of the polynomial which defines R. The next step is to
understand the image for complete intersections.

Question 2.9. So far, we have been interested in the action of R = HHO(R, R) on the singularity
category. However, there is also an action of the entire Hochschild cohomology algebra HH* (A, A)
on the singularity category. What is the image of the map HHy_ (R, R) — HH*(R, R)? How far is
it from being equal to the ideal of elements in HH*(R, R) which annihilate the singularity category
of R?

3. ON DOMINANT DIMENSIONS

Maximal Cohen-Macaulay representation theory of Cohen-Macaulay local rings and representation
theory of finite dimensional algebras have a very important tool in common: the Auslander-Reiten
theory. Hence, a lot of techniques can be transferred between these two theories and can also be gen-
eralized to extriangulated categories. One example is Gabriel’s theorem on quiver representations
and its commutative counterpart due to Buchweitz-Greuel-Schreyer.

One project that I am currently working on relies on this fact. In particular, this project tries to
understand the notion of dominant dimension in maximal Cohen-Macaulay representation theory.
This is an ongoing project joint with Graham Leushcke.

Dominant Dimension of a Finite Dimensional Algebra. Let A be a finite dimensional (or
more generally an artinian) algebra. Consider A as a right module over itself and let

0= A—=10=71— 1m™ ...

be a minimal injective resolution of A. Then, the dominant dimension of A is defined to be the
largest number k or oo such that 19 I',..., I*~! are projective.

Dominant dimension was introduced by Nakayama in his study of complete homology theory and
has been studied intensively over the decades. For instance, it has been used to classify finite
dimensional algebras of finite representation type [ARS95]. Unlike other notions of dimension, it
is desired that the dominant dimension is large. This is related to self-orthogonality which plays
an important role in Iyama’s higher Auslander-Reiten theory and Rouquier’s cover theory (See
[FKY18] and references within).

Dominant Dimension Relative to Maximal Cohen-Macaulay Modules. Let R be a
Cohen-Macaulay local ring with canonical module w. Let A be an R-order i.e. a finite R-algebra
which is maximal Cohen-Macaulay as an R-module. We will write X € MCM(A) to mean that the
left A-module X is maximal Cohen-Macaulay as an R-module.

We say that a finitely generated left A-module X is relatively injective if
1. X € MCM(A) and



2. Ext} (=, X) =0 on MCM(A) for any n > 0.

Lemma 3.1. Let wy = Hompg(A°P,w). Then a left A-module is relatively injective if and only if it
18 isomorphic to a direct summand of finitely many copies of wy.

If A is a non-singular order in terms of Iyama and Wemyss, then wy is a projective left A-module
[IW14]. In this case, a left A-module is relatively injective if and only if it is projective which is
equivalent to being maximal Cohen-Macaulay.

A relatively injective resolution of A is a complex 0 — I° — I' — ... — I"™ — ... whose homology is
isomorphic to A concentrated in degree zero where Iy, ..., I"™ are relatively injective left A-modules.
The relative injective dimension of A is the infimum of lengths of relatively injective resolutions of
A. Note that this is equal to the projective dimension of Homp(A,w) as a left A°P-module.

Let 0 - I - I' — ... = I™! — ... be a minimal relatively injective resolution of A. We say
that A has relative dominant dimension at least m if I°,...,I™ ! are also projective. We say that
the relative dominant dimension is equal to m if it is at least m but it is not greater than m.

Relative Injective Dimension and Global Dimension. We can relate the relative injective
dimension of A to its global dimension.

Lemma 3.2. Let R be an R-order. Then, the relative injective dimension of A is gldim A —dim R.
This yields the following questions.

Question 3.3. Can we construct R-orders with relative dominant dimension m and global dimen-
sion m + dim R? Can we classify such orders?

Relative Dominant Dimension and Tilting. Our motivation to begin this project is tilting
theory results similar to [CBS17, PS18, NRTZ17] We have some preliminary results and some
approachable questions.

We say that a A-module X is tilting if
1. it has finite projective dimension,
2. Ext!(X,X) =0 for i >0, and

3. there is an exact sequence 0 - A — Yy — Y7 ... — Y; — 0 where each Yj is a direct summand
of finitely many copies of X.

Suppose that A is an R-order with relative dominant dimension at least m and let
0=A—=I">1t—» 5t

be an exact sequence with projective-relatively injective 1°,..., 1™~ 1.

Lemma 3.4. 1. If m > dim R, then the image K; of the map I’ — D*Y s mazimal Cohen-
Macaulay for any j =0,...,m —dim R — 1. Hence, T = Nel's..ele Kj; is a tilting
module.



Question 3.5. Can we prove any uniqueness results for these tilting modules? For instance, can
we prove that T is the unique tilting module (up to isomorphism) which has projective dimension
j+17?

Analogous results in the theory of finite dimensional algebras exist [CBS17, NRTZ17].Unfortunately,
we do not have some of the machinery which goes into the proofs of those results.

Question 3.6. Can we prove that the tilting module 7} is also cotilting?

We have finite injective dimension and self-orthogonality, and in this case T} is called a special
cotilting module in the literature.

Question 3.7. The importance of tilting modules comes from the fact that they produce derived
equivalences. In particular, we know that A is derived equivalent to End(7}). What does this
endomorphism ring look like?

This question, stated last, is the starting point of this project. Indeed, this ongoing project started
as an attempt to understand the projective quotient algebra which appears in [CBS17, PS18]
in the finite dimensional algebra case. The projective quotient algebra is defined as a certain
endomorphism algebra in the homotopy category of two term complexes of the form P — X where
P is a projective module and X is a finite dimensional module. It is then showed to be a tilted
algebra and used as a desingularization of quiver varieties. The corresponding tilting module is
analogous to our 7; and we believe that the answer to Question 3.8 will be analogous to the
projective quotient algebra.

Finite CM Type. We know that if A is a non-singular order, then the canonical module wp of
A (and every other maximal Cohen-Macaulay A-module) is projective [IW14]. We are interested
in the case where A has finite global dimension but fails to be non-singular.

Example 3.8. Let k be an infinite field and let R be the quotient of k[z,y, z,u,v] by the ideal
(xz—y?%, xv —yu,yv — zu). Then, R is a 3-dimensional isolated singularity and it is not-Gorenstein.
Let A = Endg(R @ w). Then A is an R-order of global dimension 4. A is not a non-singular order.

Question 3.9. Can we classify R-orders which have finitely many non-projective maximal Cohen-
Macaulay modules up to isomorphism - using the notion of relative dominant dimension?

The analogous result in the finite dimensional algebra case is proved in [ARS95]. Even though
some details are missing in our case, we can answer this question positively.
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