Jordan Form

(1) Find the Jordan for the following operators.

(a) \(T : V \to V \) defined by \(T(f) = f' \) where \(V \) is the vectorspace of real valued functions spanned by \(\{1, t, t^2, e^t, te^t\} \).

(b) \(T : M_2(\mathbb{R}) \to M_2(\mathbb{R}) \) defined by

\[
T(A) = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} A - A^t
\]

(c) Let \(P_2[x, y] \) be the space of polynomials with coefficients from a field \(F \) of degree at most 2 (so, it is a 6-dimensional space with a basis \(\{1, x, y, x^2, xy, y^2\} \)). Let \(T : P_2[x, y] \to P_2[x, y] \) be defined by

\[
T(p) = \frac{\partial}{\partial x} p + \frac{\partial}{\partial y} p
\]

(2) Let \(T \) be a linear operator on a finite dimensional vectorspace over a perfect field (just consider \(\mathbb{C} \)). Prove that \(T \) can be written as a sum of a semisimple (you can think this as diagonalizable over \(\mathbb{C} \)) operator \(S \) and a nilpotent operator \(N \). Moreover, prove that \(SN - NS = 0 \).

(3) Let \(A \) be a \(3 \times 3 \) matrix. Discuss how one can compute \(A^{100} \) with as little computation as possible.

(4) Classify all matrices in \(M_n(\mathbb{C}) \) up to similarity where \(n = 1, 2, 3, 4, 5 \).