Jordan Form

1. For all possible shapes of Jordan forms of a 4×4 matrix, compute the 100th power.

2. Let S_3 be the group of permutations of a 3 element set and let $\sigma \in S_3$. Pick a basis $\beta = \{v_1, v_2, v_3\}$ of a three dimensional vectorspace V over a field F. Then, sending v_i to $v_{\sigma i}$ defines an automorphism of V. Denote this linear operator by T_{σ}.

 (a) Let $F = \mathbb{Q}$. For which $\sigma \in S_3$, is T_{σ} diagonalizable? Find all possible Jordan forms.
 (b) Let $F = \mathbb{C}$. For which $\sigma \in S_3$, is T_{σ} diagonalizable? Find all possible Jordan forms.

3. Let A be an $n \times n$ matrix whose characteristic polynomial splits. Prove that A and A^T have the same Jordan form.

4. Show that, e^A exists for all square matrices $A \in M_n(\mathbb{C})$.