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A Cautionary Tale

To motivate the necessity for caution and clarity regarding things dealing
with randomness, we consider a cautionary tale in the form of the following
question.

Example 1

QUESTION: Consider a circle in the plane with a 2 inch radius.
Select a chord of this circle at random. What’s the probability that
this randomly selected chord will hit an inner circle whose radius
is 1 inch? I’m going to give three separate ways of thinking of this

problem.
Reasonable Answer #1: Chords are uniquely (modulo those passing
through the centre...) determined by the location of heir midpoints.
Thus,

P(hitting inner circle) =
area of inner circle
area of outer circle

=
1
4

In the above, I’ve used the standard convention of denoting a probabil-
ity with the symbol P.

Reasonable Answer #2: Circles have an obvious symmetry. We may
as well then simply consider vertically aligned chords. The diameter
of the outer circle is 4 inches and the chord will intersect the inner
circle if and only if the chord falls in the 2 inch diameter region.
From this then we have

P(hitting inner circle) =
2inches
4inches

=
1
2

Reasonable Answer #3: We use symmetry again. Assume that the
chord intersects the left edge of the larger circle subtending an angle
θ ∈ [− π2 , π2 ] with the horizontal. By trigonometry we have

P(hitting inner circle) = P(θ ∈ [−
π

6
,
π

6
])

=
2π
6

π

=
1
3

Our naive intuition led, in the prior example, to three completely different
answers to what sounded like an innocuous geometry question. Namely, we
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obtained
P =

1
2

,
1
3

,
1
4

all with reasonable-sounding arguments. The reason for this mess lies in the
carelessness with which we used the word “random" in the posing of the
question. We never really made clear what we meant by ‘selecting a chord of
this circle at random". Each such occurrence of a chord in the example is a
random event and each of the three suggested answers is a different attempt
to capture the random event in a random variable. We’re going to try to
tighten up our understanding of randomness in order to have unambiguous
answers to questions like the above.

Probability Spaces

Probability theory is a mathematical tool allowing us to draw insight from
experiements. The results of experiments are events. Of course, a single
experiment may result in several events. For instance, throwing two die can
consist in the following events

• 3 & 3

• two odd faces, or

• sum of tosses = 6

none of which are mutually exclusive outcomes. The above are examples
of what are called compound events as they decompose neatly into single
events. For instance the “sum of tosses = 6" event decomposes into the single
events (1, 5), (2, 4), (3, 3), 4, 2) and (5, 1). To take another easy example,
consider temperature represented in the variable x. Then each value of
x represents a simple event whereas “ the temperature is in the fifties" is
represented by the compound event

50 ≤ x < 60

When dealing with probability, we make the following definition.

Definition 1: Sample Space

The Sample Space, Ω, of an experiment is the set of all discoverable
outcomes. Namely Ω = {all events}. The elements of Ω are often
called sample points.

Example 2

We toss a fair coin 3 times. Then

Ω = {HHH, HHT , HT H, T HH, HTT , T HT , TT H, TTT }

And the event A = “ two or more heads" corresponds to the first four
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elements in Ω, the event B = “just one tail" corresponds to the events
HHT , T HH, HT H and A ∩ B is also an event in Ω, namely, A ∩ B =

{HHT , T HH}

Notice that every thinkable outcome of the experiment in question cor-
responds to one and only one event. It’s important to emphasize a sort of
obvious point: it only makes sense to discuss an event A if it’s clear for every
outcome of the experiment in question whether or not A has occurred. We
then ought to be able to determine whether A or Ac has occurred. Further
more, we should be able to know, given any two elements of Ω, whether
A ∪ B or A ∩ B has occurred. These naive considerations lead us to the more
sophisticated definition of a probability space.

Definition 2: Probability Space

A Probability Space is a tuple (Ω,F , P) where

• Ω is a sample space of events under consideration

• F is a σ-algebra of subsets of Ω, and

• P : F → [0, 1] is a probability measure on the above σ-algebra

A σ-algebra F of Ω is a collection of subsets of Ω such that

• Ω ∈ F

• A ∈ F =⇒ Ac ∈ F , and

• if A1, A2, ... ∈ F then ∪iAi ∈ F

The last condition above is generally phrased “closure under count-
able unions". The probability measure P is a function from F to the
unit interval [0, 1] satisfying:

• P(A) ≥ 0 for all A ∈ F

• P(Ω) = 1

• P(UiAi) =
∑

i P(Ai) for all Ai satisfying Ai ∩ A j = ∅, i , j

The concept of σ-algebra may seem overly-technical and mysterious
to you right now, but that should be overcome with familiarity. These σ-
algebras will become a more essential part of your studies in courses on
martingales. See, e.g., the excellent little book by Williams 3. Mostly σ- 3 David Williams. Probability with Martin-

gales. Cambridge University Pressalgebras should be thought of as “discernable information", as it is only
elements of these which we can sensibly assign probabilities in a consistent
way to. They are divisions of sample space, namely a list of outcomes, for
which we can determine whether or not an event has occurred.
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Notice, as a consequence of the above, that

1 = P(Ω)

= P(A∪ Ac)

= P(A) + P(Ac)

so we have P(Ac) = 1 −P(A) gives the probability of the complementary
outcome to event A. As well, if A ⊂ B, then B = A ∪ (Ac ∩ B) provides a
disjoint union decomposition of B. Then

P(B) = P(A∪ (Ac ∩ B))

= P(A) + P(Ac ∩ B)

≥ P(A)

So that A ⊂ B =⇒ P(A) ≤ P(B). In this sense the function P helps to
gives sizes to the sets of F . We can extend the preceding to infinite collec-
tions of sets.

Proposition 1

The function P is countably subadditive. In other words,

P(∪∞i=1Ai) ≤
∞∑

i=1

P(Ai)

for all Ai ∈ F

Proof

The sets Ãi = Ai \ (∩ j<iA j) are disjoint. Then, P(∪iAi) = P(∪iÃi) =∑
i P(Ãi). But, since Ãi ⊂ Ai we have

∑
i P(Ãi) ≤

∑
i P(Ai). �

We close with an important common case of probability spaces.

Example 3

There are discrete probability spaces. These occur when Ω is an at
most countable set, F = P(Ω), the powerset of the sample space.
Then we define

P(A) =
∑
ω∈A

P(ω)

where
∑
ω∈Ω P(ω) = 1. For Ω a finite set, we often use P(ω) = 1

|Ω| ,
distributing probability equally among events.

Example 4

Consider rolling two dice. Then this is a discrete probability space
with Ω = {1, 2, 3, 4, 5, 6}2 and σ-algebra given by all possible subsets
of Ω. Then, as in the above, we define P(A) = |A|

36 .
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Random Variables

We want to be able to deal with data (numbers) coming from a random event.
So the numbers will be encoding randomness for us. Given the numbers
which encode the randomness, we still want to be able to distinguish events.
Consider the following example.

Example 5

We consider a coin toss. In this case Ω = {ω | ω ∈ {H, T }}. We will
use F = P(Ω) the powerset of the sample space, as our σ-algebra.
We can define a map X : F → {0, 1} via

X(H) = 0, X(T ) = 1

Then observing the values of X allows us to determine whether a
heads or tails occurred.

On our probability space (Ω,F , P) we have probabilities of events. As
the previous example sort of indicated, random variables are a way for us to
be able to assign probabilities to numerical data. There are, however, some
technical obstructions precluding a naive assignment of probabilities to, say,
R. We deal with these now.

For a topological space S , we define B(S ) to be the so-called “Borel field"
of S given by σ(open sets of S ), the σ-algebra generated by the open sets
of S . Namely, it’s a σ-algebra adapted to the topological structure of S and
is the smallest σ-algebra containing the open sets of S (in the sense that
all others with that property have B(S ) as a subset). We often will just use
B � B(R). Even without invoking subtle mathematics like the Axiom of
Choice, one can show that B , R since R can contain some very complicated
sets not living in B.

One common construction of B involves the following. We set π(R) =

{(−∞, x] | x ∈ R}. Then we consider the σ-algebra generated by this
collection of subsets of R. It turns out that

B = σ(π(R))

It’s this construction of B which is most helpful to us in our consideration of
random variables.

Definition 3: Random Variable

A random variable X : F → R on a probability space (Ω,F , P) is a
function such that

X−1(B) ∈ F

holds for all Borel sets B ⊂ B. Such an X as above is said to be a “F -
measurable" function.

In the above, the condition X−1(B) ∈ F is a common shorthand for
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{ω | X(ω) ∈ B} ∈ F . What this means is that the preimage of Borel subsets
should be distinguishable, namely, things we can assign probabilities to.
After all, we’re using the function X as a way to measure probabilities on
spaces like R which are inheriting their randomness from the probability
space. So we want to be able to assign probabilities to the interesting subsets
of R.

Example 6

Consider the trivial algebra F = {∅, Ω}. We can only construct dis-
crete random variables on this space. Namely

{ω | X(ω) = c} ⇐⇒ ω = Ω

In other words, X must be constant. The only random variables we
can construct on the trivial algebra are constants.

Important: In the preceding example the sample space Ω need not be
discrete, only the random variable must be. Random variables say more about
the σ-algebras than about the underlying sample space.

Example 7

Consider F = P(Ω). In this case any function X : F → R is a ran-
dom variable since {ω | X(ω) = c} is clearly a subset of Ω and there-
fore is in F .

The next example strikes a balance in between the two preceding ones.

Example 8

Consider the measurement of a stock on two different days. The price
can move up or down, which we represent as tuples. Namely,

Ω = {ω1 = (u, u).ω2 = (u, d),ω3 = (d, u),ω4 = (d, d)}

Now we construct a σ-algebra. Let A = {ω1,ω2} and define

F = {A, Ac, ∅, Ω}

namely, F = σ(A), the σ-algebra generated by the set A.
Now consider two functions X, Y defined on Ω via

X(ω1) = X(ω2) = 1.5, X(ω3) = X(ω4) = .5

and
Y(w1) = 1.52, Y(ω2) = Y(ω3) = .75, Y(ω4) = .52

Notice that

{ω | X(ω) = 1.5} = {X = 1.5} = {ω1,ω2} = A ∈ F
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and
{X = .5} = Ac ∈ F

so therefore X is F -measurable and necessarily defines a random
variable. On the other hand, {Y = .75} = {ω2,ω3} < F so Y is not a
random variable.

Distributions and Densities

Random variables implicitly define distribution functions

FX(x) � P({ω | X(ω) ≤ x})

Sometimes also written FX(x) = P(X ≤ x). Be sure you understand the
difference and are ok with either. The distribution function is also called the
cumulative distribution function and abbreviated cdf.

Of course, random variables then also induce probability measures (also
called a probability distribution in this setting) on R, via

PX(B) = P(X ∈ B) = P({ω | X(ω) ∈ B}), ∀B ∈ B

The above makes (R,B, PX) into a probability space in its own right. These
considerations are encapsulated in the following representation

(Ω,F , P)
X
←−−→

X−1
(R,B, PX)

Random variables are determined by the values they take on, and this is
governed by their distribution functions. So, to talk about a random variable
is to talk about a distribution function.

Proposition 2

Let F be a distribution function for a random variable X. Then

1. F is non-decreasing

2. limx↑∞ F(x) = 1 and limx↓−∞ F(x) = 0

3. limx↓y F(x) = F(y), F is right-continuous

4. limx↑y F(x) = P(X < y) and

5. P(X = x) = F(x) − F(x−)

Proof

To prove the first claim we notice that x ≤ y =⇒ {X ≤ x} ⊂ {X ≤ y}.
So therefore P(X ≤ x) ≤ P(X ≤ y) proving the non-decrease of the
cdf.



13

The second claim follows trivially from

lim
x↑∞
{X ≤ x} = Ω, lim

x↓−∞
{X ≤ x} = ∅

For the right-continuity of the cdf observe that y ↓ x =⇒ {X ≤ y} ↓
{X ≤ x}. For the fourth claim notice that y ↑ x =⇒ {X ≤ y} ↑ {X <

x}. Notice the strict inequality here. Finally, P(X = x) = P(X ≤ x) −
P(X < x) = F(x) − F(x−). �

As it happens, the first three conditions given in the previous proposition
rigidly determine distribution functions in the sense that if a function satis-
fies the first three conditions then it happens to be a cdf for some random
variable.4. 4 The following proof uses Lebesgue

measure. Lebesgue measure is a stan-
dard measure on intervals of R given by
P([a, b]) = b − a on closed intervals and
vanishing on individual points.

Proposition 3

Suppose that F(x) satisfies

1. F is non-decreasing

2. limx↑∞ F(x) = 1 and limx↓−∞ F(x) = 0

3. limx↓y F(x) = F(y), F is right-continuous

Then F(x) = FX(x) for some random variable X.

Proof

Let Ω = (0, 1), F = (B) and P denote the Lebesgue measure on the
unit interval. Define

X(ω) = sup{y | F(y) < ω}

We show that X is a random variable, namely that it is F -measurable.
For this, notice that

ω ≤ F(x) =⇒ X(ω) ≤ x

If w > F(x) the from the right-continuity of F we have that there ex-
ists an ε > 0 such that F(x + ε) < ω and X(ω) ≥ x + ε > x. Therefore

w ≤ F(x) ⇐⇒ X(ω) ≤ x

So {ω | X(ω) ≤ x} = {w | ω ≤ F(x)}. Thus

P(X ≤ x) = P(ω ≤ F(x)

= P([0, F(x)]) in Lebesgue measure

= F(x)

�
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A commonly used tool in probability, related to cdf, is that of a density
function which we now introduce.

Definition 4: ProbabilityMass and Density

• Consider the induced distribution PX of random variable X. If
there exists an at most countable subset B = {x1, x2, ...} ⊂ R such
that P(B) = 1 then X is a discrete random variable. In this case
we define

p(x) � P(X = x)

to be the probability mass function (pmf) of X.

• If X is a continuous random variable with differentiable distri-
bution function FX(x), set pX(x) = F′X(x). We call pX(x) the
probability density function (pdf) of X.

A few remarks are in order.

• Par abus de langage we shall normally just refer to pmfs and pdfs as,
simply pdfs, or even more simply, “densities".

• Sometimes we omit writing the random variable X in the density in
question and abbreviate pX(x) as simply p(x). The random variable for
which the function is a density should be clear from context.

• We should think or densities, pmfs particularly so, as

p(xi) = lim
n↗∞

#{times xi occurred in n trials}
n

Namely, it’s the relative frequency or idealized histogram of outcomes
from experimental investigation. The above shouldn’t be taken too se-
riously in the case of continuous distributions but is a good intuition to
nurture.

• Given a pdf, p(x), for a continuous variable X, we can then define

P(X ∈ (a, b)) =
∫ b

a
p(x)dx

This useful formula gives us the probability of observing values of our
random variable on any interval of the real line.

• We often write X ∼ p(x) to indicate that the random variable X has
density given by the function p, namely that X is “p distributed".

Useful Distributions

Here we cover some of the commonly encountered distributions relevant for
our work.
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1. Bernoulli Distribution. Let X ∈ {0, 1} with P(X = 1) = p. Then

pX(x) = px(1 − p)1−x

represents the “probability of success" in a so-called “Bernoulli trial". We
denote this parameterized distribution by B(p) and write X ∼ B(p).

2. Binomial Distribution: Let X denote the number of successes in n
Bernoulli trials where the probability of a single success is p. You can
think of this as being the number of total heads in n tosses of a coin whose
probability of getting a single head is p. Then X =

∑n
i=1 Yi for Yi ∼ B(p).

Then we have

P(X = x) = P(xsuccesses out of n trials)

= P(x of n of the Y’s are 1 with probability p)

=

(
n
x

)
px(1 − p)n−x

We say that X ∼ B(n, p) and say that X is binomially distributed. Notice
that B(p) = B(1, p).

3. Poisson Distribution: We say that X is Poisson-distributed (with parame-
ter λ) if

pX(k, λ) =
e−λλk

k!
, k = 0, 1, 2, ...

This represents the probability of observing k events within a fixed-time
interval.

The Poisson distribution is related to the Binomial distribution. Here we
sketch the relationship. Consider p to be the (smallish) chance of success
in a Bernoulli trial and suppose that n >> 1. Then define λ = np which
should be medium-sized, based on the assumptions on n and p. Then, as
we saw before, B(n, p)(k) = (n

k)pk(1 − p)n−k. So, in particular, we have

B(n, p)(0) = (1 − p)n = (1 −
λ

n
)n n→∞
−−−−→ ppoisson(0; λ) = e−λ

Next,

B(n, p)(1) = np(1 − p)n−1

=
λ

1 − p
B(n, p)(0)

=
λ

1 − λ
n

B(n, p)(0)

n→∞
−−−−→ λe−λ

= ppoisson(1; λ)
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Similarly,

B(n, p)(2) =
n(n − 1)p2

2(1 − p)2 B(n, p)(0)

n→∞
−−−−→

λ2

2
e−λ

= ppoisson(2; λ)

From which we see the trend that

ppoisson(k; λ) ≈ B(n,
λ

n
)(k), n large

Though we see this by working through formulas the reasoning is perhaps
mysterious. We’ll try to clear it up a bit.

Let’s suppose that we have an experiment whose conditions remain
constant in time (if you like, you can imagine the experiment being clicks
on a geiger counter while observing a radioactive substance). Split the
unit time of the experiment into n intervals of time each of length 1

n . We
suppose that non-overlapping time intervals have the property that the
number of events occurring in one interval reveals nothing about the
number of events occurring in any other interval. We will count as a
success whether a particular subinterval has at least one event take place
in it. We define a density function indexed by the number of subintervals
we’ve got under consideration

pn = P(success)

which, necessarily, is the same for each subinterval. The probability of
observing k successes over the entire duration of the experiment ought to
be B(n, pn)(k) since we’ve got a Bernoulli trial for each subinterval. Of
course, as n gets really big we expect a vanishing probability of a success
on any subinterval.

Next, we split each interval in half. Notice that this gives us

pn = 2p2n − p2
2n

since an event happening in a window of length 1
n should be twice as

likely as an event happening in a window of half the length, except some-
times there will be events that happen only in the first (or second) half of
the now-split subinterval. So the subtraction allows for us to not mistak-
enly overcount those multiple events that happen on one half of an interval
and aren’t evenly spread out. The above then implies that pn < 2p2n, so
in particular we have that npn < 2np2n which means that npn is monoton-
ically increasing (but bounded above). We define λ � limn↗∞ npn. Then

we have B(n, λn )(k)
n↑∞
−−−→ ppoisson(k; λ) as previously claimed.
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As a follow-up on the above, we remark that e−λt (λt)k

k! is the probability of
finding k successes in an interval of length t. So we can scale the length of
the Poisson distributed variables accordingly.

4. Normal Distribution: X is said to be normally distributed, of Gaussian
distributed, if

pX(x) =
1

√
2πσ2

e−
(x−µ)2

2σ2 = N(µ,σ2)(x)

with σ , 0. This distribution, for reasons to be made clear later, is
ubiquitous in probability, statistics, physics, mathematics, and data science.
In some sense it is the canonical distribution for a random variable. We
remark that Gaussian distributed random variables exhibit a nice scaling
property whereby if

X ∼ N(µ,σ2) =⇒
X − µ
σ
∼ N(0, 1) (0.0.1)

We call N(0, 1) - distributed random variables “Standard Normal" vari-
ables.

5. Cauchy Distribution: X is said to be standard Cauchy distributed if

pX(x) =
1

π(1 + x2)

More generally the Cauchy Distribution function is Ca(x0, γ)(x) =
1

π(1+(
x−x0
γ )2)

.

6. Logistic Distribution: We say that X ∼ LG(µ, s) is logistically dis-

tributed when LG(µ, s) = e−
x−µ

s

s(1+e−
x−µ

s )2
The Logistic distribution can be

defined in terms of the logistic function σ(z) � 1
1+e−z which we will en-

counter later on when doing regression and discussing machine learning.

7. Laplace Distribution: X is Laplace distributed if X ∼ Lap(µ, b) =
1

2b e
|x−b|

b for b > 0. This is sometimes called a double exponential distribu-
tion.

8. Exponential Distribution: X is exponentially distributed if X ∼
Exp(a, b). The function Exp(a, b) = 1

a e−
x−b

a 1x>b. Here we’ve used
the indicator function, 1A(x) which takes the value 1 on x ∈ A and zero
otherwise.

9. Uniform Distribution: We say that X is uniformly distributed on [a, b]

when X ∼ U(a, b) withU(a, b)(x) =
1[a,b]
b−a .

Random Vectors

We begin with a definition.
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Definition 5: Random Vector

Let Xi, i = 1, ..., n be random variables on a probability space

(Ω,F , P). Then X =


X1

X2
...

Xn

 is a random vector. It has joint distribu-

tion function given by

FX1,...,Xn(x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn)

The main takeaway from the definition of a random vector is that it
doesn’t make sense, a priori, to describe components by themselves. One
should think of the entire vector as a random object. On the other hand, one
way to think about the way the components of a random vector distribute
themselves is via marginal distributions. These are defined as follows. If
{i1, ..., ik} ⊂ {1, 2, ..., n} with i1 < i2 < · · · < ik then

F(xi1 , ..., xik ) � FX1,...,Xn(∞,∞, ..., xi1 ,∞, ..., xi2 ,∞, ...,∞)

is the marginal distribution function of (Xi1 , ..., Xik )
T . Probability density

functions and probability mass functions are defined analogously to how they
were in the single variable case. Namely, if FX1,...,Xn is differentiable then

FX1,...,Xn(x1, ..., xn) =

∫ x1

−∞

· · ·

∫ xn

−∞

p(x1, ..., xn)︸        ︷︷        ︸
Joint pdf of X1,...,Xn

dx1 · · · dxn

Independence

Two events, A and B, are said to be independent if P(A ∩ B) = P(A)P(B).
You can think of this as similar to the informal notion of independence mean-
ing “not influenced by". This is because if the two events have nothing really
to do with each other then calculating the chances that both happen is simply
doing combinatorics on the chances of each individually happening. For each
of the multitude of ways A could happen, we’d have a multitude of ways
for B to happen and therefore we’d be multiplying the ways (probabilities).
We can, of course, generalize this notion to multiple events. Namely, Ai, for
i = 1, ..., n are independent events if and only if

P(∩iAi) = ΠiP(Ai)

We can extend the notion of independent events to the more powerful notion
of independent random variables.
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Definition 6: Independent Random Variables

Random variables X1, ..., Xn with joint distribution function FX1,...,Xn

are independent if

FX1,...,Xn(x1, ..., xn) = FX1(x1) · · · FXn(xn)

i.e. the joint distribution factors into a product of marginals.

We denote that variables X and Y are independent with the symbol X |=Y .
If the joint distribution function admits a density pX1,....,Xn , then the variables
X1, ..., Xn are independent if and only if

pX1,....,Xn(x1, ..., xn) = Πn
i=1 pXi(xi)

Example 9

Let Σ be an n × n symmetric, positive-definite matrix (spd, for short)
and µ ∈ Rn. Then we say that X = (X1, ..., Xn)T is n-dimensional
Gaussian distributed, denoted X ∼ N(µ, Σ) if the distribution func-
tion for X is given by

1

(2π)
n
2
√

det Σ
e−

1
2 (x−µ)T Σ−1(x−µ)

We call µ the mean vector of X and Σ the covariance matrix of X.
In this case, independence of the components of X is governed by the
details of Σ−1. In particular, the entries of X will be independent if
and only if Σ is diagonal.

Conditional Probability

Asking about event A given knowledge of event B is, in general, different
from asking about A. We denote this kind of probability as describing a con-
ditional event, A|B, read “A given B". We measure probability of conditional
events by

P(A|B) =
P(A∩ B)

P(B)

Clearly then, if A |= B then P(A|B) = P(A). We like to use the intuition
that conditionals represent causal chains B → A, because the conditional
probability tells us about how event B can change the probability of event A.

This leads quite naturally to conditional random variables in the obvi-
ous way. Importantly for us, we denote the conditional pdf of two random
variables by

p(x|y) =
p(x, y)
p(y)

, p(y) , 0

We now work an example typifying the use of conditionals.



20

Example 10

In a class, it is found that 30% of women received an A, whereas
only 25% of men did. The class is %60 female. A student is selected
at random (uniformly) and found to have received an A. What’s the
probability this student is female?
We’re gong to introduce some variables. We let A denote the event of
getting an A, W denote the student being female, and M denote the
student being male. We want P(W |A). For this

P(W |A) =
P(W, A)

P(A)

=
P(W, A)

P(A|W)P(W) + P(A|M)P(M)

Here, we’ve used P(A) = P(A|W)P(W) + P(A|M)P(M) which fol-
lows directly from the marginal P(A) = P(A, M) + P(A, W). Next,
we see

P(W |A) =
P(A|W)P(W)

P(A|W)P(W) + P(A|M)P(M)
=

.3 × .6
.3 × .6 + .25 × .4

≈ 64%

Put differently, knowing the student received an A helped to gain
predictive power over the sex of the student by an increase of close to
10%. In this way, conditionals help gain predictive and explanatory
power.

Example 11

Suppose we are interested in screening for deadly Disease X. It is
known that about .3% of people carry Disease X. Medical researchers
developed a test for Disease X which is quite good. The test they’ve
developed carries only a 1% chance of false positives or false nega-
tives. This is quite good in terms of modern standards of reliability in
medical screening. We select a person from the population at random
(uniformly) and give this person the test for Disease X. The test
comes back positive. What’s the probability this person has Disease
X?
To begin, I’m going to create some variables. I denote by X+ and
X− the event that the person does or does not have Disease X, respec-
tively. I also denote by T P and T N whether the person tests positive
or negative for the disease, respectively. Then we are interested in
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finding P(X + |T P). For this, we have

P(X + |T P) =
P(X+, T P)

P(T P)

=
P(T P|X+)P(X+)

P(T P|X+)P(X+) + P(T P|X−)P(X−)

=
.99 × .003

.99 × .003 + .01 × .997
≈ 26%

In other words, despite the reliable test indicating the person had the
disease, they are about three times more likely to not have the disease
than to have it.

The above is a classic case of the use of conditionals leading to some-
what counterintuitive results. 5 We close this section by noticing that from 5 Please, do NOT misinterpret this as calling

into question the reliability or utility of
medical tests. This only has implications for
cautioning against naive interpretation of
results of such tests. Put differently, results
like this are why doctors are reluctant to
test for disease in the absence of symptoms.
The culprit in this example, after all, was
the very low prevalence of the disease in
the public. Ignoring prevalence is a mistake
known as the base-rate fallacy and is a
common cause of people overestimating the
likelihoods of rare outcomes.

P(A|B) =
P(A,B)
P(B) we have P(A, B) = P(A|B)P(B). But P(A, B) =

P(B, A), so playing the same trick but with the variables swapped gives
P(A, B) = P(B|A)P(A). Equating the two leads to

P(B|A) =
P(A|B)P(B)

P(A)

a result known as Bayes Rule after philosopher Thomas Bayes. A common
usage of Bayes rule is with events H and D denoting hypothesis being true
and data, respectively. Then, Bayes rule would read

P(hypothesis given the data) =
P(data given the hypothesis)P(hypothesis)

P(data)

Namely, the likelihood of a given hypothesis being true is determined by how
likely the hypothesis is to produce the data in question, multiplied by the rel-
ative probabilities of hypothesis and data in absence of other considerations.
In this view, the a priori probability of the hypothesis, P(hypothesis) can
be see to often hold a decisive role in adjudicating the likelihood of a given
hypothesis being true. Put differently, more reasonable hypothesis should
be treated more credibly and less reasonable hypotheses should demand
stronger evidence. When moving to random variables Bayes rule takes on the
form

p(y|x) =
p(x|y)p(y)

p(x)
, p(x) , 0

It is in this form that Bayes rule will become powerful for us in modelling
and inference later on. And, in Bayesian contexts p(y|x) is called the pos-
terior or a posteriori distribution, p(y) is called the prior or a priori dis-
tribution and p(x|y) is called the likelihood function (as it determined the
likelihood of observing the data if the hypothesis were true in our earlier
example). We often won’t be concerned much with the numerical factor p(x)
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in our examples later on as we will be looking to perform optimization of
p(y|x) with x fixed, so p(x) would just cause an unimportant overall global
scaling.

Some Statistics

Consider a discrete random variable X : F → R on probability space
(Ω,F , P). Suppose we consider n samples of the random variable (known
also as “draws"). Then we look at the average of our sample,

1
n

n∑
i=1

Xi

where Xi is the i′th instance of a draw of X. Of course, the value of this
becomes

1
n

n∑
i=1

Xi =
1
n

l∑
i=1

xini

where ni = #{X = xi in n trials}. This sum is simply
∑l

i=1 xi
ni
n . And,

we observed before, in our discussion of pmfs, that limn↗∞
ni
n = pX(xi).

Therefore, we see that

1
n

n∑
i=1

Xi
n→∞
−−−−→

∑
xi outcomes

xi pX(xi)

Put differently, in the limit of large samples, the mean of the sample ap-
proaches an weighted sum of the samples, where the weight is the relative
frequency of each outcome. This weighted sum will play a fundamental role
in our undrstanding of random variables.

Definition 7: Expectation Operator

Let X be a random variable on probability space (Ω,F , P). We de-
fine a linear functional E : X → R, called the expectation operator
via

• EX =
∑

xi xiP(X = xi) when X is a discrete random variable

• EX =
∫

R
xpX(x)dx when X is a continuous random variable

The result EX, in either case, is called the expected value of X (or
mean value), which we often denote by µ = EX.
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Example 12

We consider X ∼ B(θ). Then

EX =
∑

xi

xi p(xi)

=
∑

xi∈{0,1}

xiθ
xi(1 − θ)1−xi = θ

We want to be able to understand how the values of a random variable
distribute themselves, and a natural way to look into this is by studying how
they disperse from their expected value. For this we use the L2 distance, as in
the following definition.

Definition 8: Variance

Let X be a random variable on probability space (Ω,F , P). The
variance of X is defined by

var(X) � E[(X −EX)2]

This is often denoted σ2
X .

Of course, for a continuous variable, the formula for variance reduces to

var(X) =
∫

R

(x − µX)
2 pX(x)dx

The variance measures the average spread of the values that X takes on.
Notice that var(cX) = c2var(X) for any constant c. Moreover

var(X) = E(X − µX)
2

= E(X2 − 2XµX + µ2
X)

= E[X2] − 2µXE[X] + µ2
x

= E[X2] − (EX)2

yielding a commonly used form for calculating the variance in terms of the
second moment E[X2].

Another often-useful statistic for us is the standard deviation of a random
variable, which is the number σX �

√
var(X). You should verfiy that

σcX = |c|σX .
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Example 13

We again consider the case of X ∼ B(θ). Then

var(X) = E(X − θ)2

=
∑

xi∈{0,1}

(xi − θ)
2θxi(1 − θ)1−xi

= θ2(1 − θ) + (1 − θ)2θ

= θ(1 − θ)

Thus, as well, we have the standard deviation of a Bernoulli-
distributed variable is given by σX =

√
θ(1 − θ). From this, for

a fair coin (θ = 1
2 ), we get the standard deviation in the outcome is

given by 1
2 .

When a vector valued random variable varies, it can vary from its mean in
a more complicated way, since the are now multiple dimensions in which it
can move. The following definition is our generalization of variance to this
kind of situation.

Definition 9: CovarianceMatrix

Let X = (X − 1, ..., Xn)T be a random vector. Then

E((X −EX) ⊗ (X −EX))i j � cov(Xi, X j)

are the entries of the covariance matrix of X.

Notice, in the above, that the covariance matrix is necessarily a symmetric
matrix. Moreover, given two random variables, X and Y , we have

cov(X, Y) = E[(X − µX)(Y − µY)]

gives the covariance between the variables X and Y . Notice the covariance
is a weighted sum (or integral for continuous variables). The sum gets
larger when the summand is positive. This happens when both X and Y have
propensity to stray from their mean values at the same time and in same
direction. If they simultaneously stray from their mean values but in the
opposite direction, then we expect a negative summand. In this way, the
covariance gives us a measure of how well synchronized the variables X
and Y are to each other; it tells us how X and Y “move together". Related to
the covariance of two variables X and Y is a normalized version called the
correlation coefficient, ρXY given by

ρXY =
cov(X, Y)
σXσY

This statistic can be more informative because it blurs out the fact that certain
numerical values will be large or small and focusses on simply how well
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“in sync" the two variables are to each other. Namely, it shouldn’t matter if
both variables stray 10 units or 1010 units from their mean in the same way,
provided they are actually doing so in lockstep. The correlation coefficient
normalizes for this.

Suppose that we have two independent random variables X and Y with re-
spective means µX and µY . Notice, first off that we have, from independence
and Fubini’s theorem of multivariable calculus,

EXY =

∫
R2

xypXY(x, y)dxdy

=

∫
R2

xypX(x)pY(, y)dxdy

=

∫
R

xpX(x)dx
∫

R

ypY(y)dy

= EXEY

Then,

cov(X, Y) = E(X − µX)(Y − µY)

= E[XY ] − µYEX − µXEY + µXµY

= EXEY − µXµY

= 0

In other words independent variables are uncorrelated. We leave as a
simple exercise the fact that var(X + Y) = var(X) + var(Y) + 2cov(X, Y).
But, given this fact, we then see that

X |=Y =⇒ var(X + Y) = var(X) + var(Y)

In fact, it’s the above feature of variance that makes it so useful in practice;
variance is additive over independent variates.

Theorem 10

Let X1, ..., Xn be random variables on probability space (Ω,F , P)

with finite variances σ2
i < ∞. Define S n =

∑
i Xi. Then

var(S n) =
∑

i

σ2
i + 2

∑
j<k

cov(X j, Xk)

Proof

We have µi = EXi and then m = ES n =
∑

i µi. Then S n − m =
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∑
i(Xi − µi). Therefore

(S n −m)2 =
∑

i

(Xi − µi)
∑

j

(X j − µ j)

=
∑

i

(Xi − µi)
2 +

∑
i, j

(Xi − µi)(X j − µ j)

=
∑

i

(Xi − µi)
2 + 2

∑
i< j

(Xi − µi)(X j − µ j)

Taking expectations of both sides yields the result. �

Therefore, we get the following corollary.

Corollary 1

Let X1, ..., Xn be uncorrelated random variables. Then

var(
∑

i

Xi) =
∑

var(Xi)

Entropy and Information

Much of this section is influenced by the wonderful series “A Human’s Guide
to Words" by Yudkowsky6. Consider now a random variable X ∈ {X1, ..., X8}, 6 Elizier Yudkowsky. https://wiki.

lesswrong.com/wiki/A_Human’s_
Guide_to_Words

where each Xi is equally likely. If you wish, X can represent the outcome
of a toss of a fair eight-sided die. We’d like to know which state X is in by
querying someone who has tossed the die beyond our view. I get to query by
asking only yes/no questions. So, for instance, my strategy for asking could
be based on the following division

{X1, X2, X3, X4︸           ︷︷           ︸
0 (no)

, X5, X6, X7, X8︸           ︷︷           ︸
1 (yes)

}

This corresponds to me asking the tosser “did the die come up in either of
X1, X2, X3, X4?". Suppose I’m allowed to ask more questions. Then I can split
the outcomes I’m querying on further. One such division would be

{X1, X2︸︷︷︸
00

, X3, X4︸︷︷︸
01

, X5, X6︸︷︷︸
10

, X7, X8︸︷︷︸
11

}

These are placeholders for queries such as “Was the outcome in the first
four states?" followed by, say, “Good, now is it in the first half of that subset
of four states?", and the like. In this way we may end up settling on the
following encoding scheme

X1 : 001, X2 : 010, X3 : 011, X4 : 100

X5 : 101, X6 : 110, X7 : 111, X8 : 000

https://wiki.lesswrong.com/wiki/A_Human's_Guide_to_Words
https://wiki.lesswrong.com/wiki/A_Human's_Guide_to_Words
https://wiki.lesswrong.com/wiki/A_Human's_Guide_to_Words
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Which allows us to figure out the outcome of the die-toss in at most three
binary questions. We say, in this instance, that X has entropy of 3 bits. In this
sense, the entropy measures the average number of binary queries it takes to
determine the value of a random variable. As another example, consider a
random variable Y such that

P(Y = Y1) =
1
2

P(Y = Y2) = P(Y = Y3) =
1
8

P(Y = Y4) =
1
4

The entropy in this instance can be found by using the following encoding

Y1 : 1, Y2 : 01, Y3 : 001, Y4 : 000

In this way, half time we need only ask a single binary question (“is the
first digit a one?"), a quarter of the time we’ll need to ask two binary ques-
tions, and an eighth of the time three queries are required (in two possible
outcomes). Therefore

E[number of queries] =
1
2
+ 2 ×

1
4
+ 3 ×

1
8
+ 3 ×

1
8

= 1.75

This is of course, just −E[log2(pY)] as

E[log2(pY)] = P(Y = Y1) log2 P(Y = Y1) + P(Y = Y2) log2 P(Y = Y2)

+ P(Y = Y3) log2 P(Y = Y3) + P(Y = Y4) log2 P(Y = Y4)

=
1
2

log2(
1
2
) +

1
4

log2(
1
4
) +

2
8

log2(
1
8
)

= −(
1
2
+ 2 ×

1
4
+ 3 ×

1
8
+ 6 ×

1
8
)

= −1.75

In agreement with the earlier calculation. Notice that on average we expect
to only have to ask 1.75 questions, which is lower than the naive estimate of
2 which we would expect were all outcome states equally likely. So knowing
the probability isn’t evenly distributed helped us come up with an improved
encoding scheme which reduced the number of queries we’d require on
average.

Notice, in the prior example, that we used the following heuristic in
our encoding scheme: probable events carry less information. In other
words probable events should have shorter codes and therefore require
fewer guesses. Of course, intuitively that’s true. The more probable an
outcome is the less uncertainty an instance of it occurring resolves.7 The 7 Notice that this is the reason why com-

monly used words happen to be short, e.g.
“the", “a", “but", “time", “if", etc. Words are
coding concepts and the more frequently
used words ought to have shorter codes.
Although natural language may naively
seem arbitrary, it’s a general pattern that
languages with this heuristic are the ones
that ended up sticking around.

number of guesses we expect to make is a proxy for what we might call the
“unpredictability" of outcomes.



28

Definition 11: Entropy of a Random Variable

Let X ∼ pX be a random variable on probability space (Ω,F , P).
Then

H(X) � −E[ln pX ]

is the entropy of X. When pX = 0 we use pX ln pX = 0. Entropy is
measured in “nats".

The literature also often uses H(X) � −E[log2 pX ] as we were in our
introductory examples, in which case the entropy is measured in “bits" rather
than nats. We alternate between using bits and nats.

Example 14

We will calculate the base-2 entropy of a Bernoulli variable
X ∼ B(p).

−H(X) = −E[log2 pX ]

= P(X = 0) log2 P(X = 0) + P(X = 1) log2 P(X = 1)

= (1 − p) log2(1 − p) + p log2 p

i.e. the entropy is H(X) = (p − 1) log2(1 − p) − p log2 p. Notice
that H(X) is then 0 for p = 0, 1. In other words certain outcomes
carry zero entropy. If we wanted to maximize the entropy we would
take derivative in p, set to zero and find that p = 1

2 causes maximum
entropy of 1. In other words fair coins carry the maximum entropy.

We consider now a pair of variables X and Y with the following properties:
X takes one of 8 possible outcomes with equal likelihood and Y takes one
of 4 probabilities with equal probability. We ask what is the entropy of the
system (X, Y)? On the one hand we now that H(X) = 3 and H(Y) = 2
which would suggest that H(X, Y) = 3 + 2 − 5. Yet, suppose that X and
Y are non-independent. For instance, what if it were known that upon any
observation of the pair of uniformly distributed variables X and Y we saw that
either both X and Y were odd or both were even? This implies that, once we
determine if, say, X = X5, which can be done in at most 3 queries, we have
left to determine whether Y = Y1 or Y = Y3, which can be answered in a
single query. In other words (X, Y) can be determined in at most 4 queries.
This reasoning is clearly independent of whichever value of X we happen
to observe. So, in fact, H(X, Y) = 4 < H(X) + H(Y). Somehow the
degree of shared information among the two variables served to decrease the
total amount of information from what it might have naively been. We’ve
implicitly been using the joint entropy of a pair of random variables (X, Y)
as

H(X, Y) = −E[log pXY ]
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or H(X, Y) = −
∑

x,y pXY(x, y) log pXY(x, y). What we care about then is the
degree to which variables can share information, as in the preceding example,
in such a way as to lower the entropy from what it might have been in the
case where the variables are independent.

Definition 12: Mutual Information

Given random variables X, Y the mutual information between X and
Y is given by

I(X, Y) � H(X) + H(Y) − H(X, Y)

In the case of the example considered in the above we see that I(X, Y) =
4. As well, it can be shown (see the exercises) that the mutual information
between variables is zero when and only when the variables are independent,
in congruity with the informal notion of shared information.

Relative Entropy

Consider the following situation, as described in the classic work by Kull-
back8: we’re given draws of a random variable X from an unknown distribu- 8 Solomon Kullback. Information Theory and

Statistics. Dover Publications Inc., 1978tion and we wish to decide which, among two competing distributions, the
variable X is distributed according to. Namely, we have

Either X ∼ pX or X ∼ qX

We let Hi denote the associated hypotheses, i.e. Hi shall denote the hypoth-
esis that X ∼ fi where f1 = pX and f2 = qX . We shall now try to weight
the evidence, provided to us by samples of X, in favour of each distribution.
Bayes rule says that

P(Hi | x) =
P(x | Hi)P(Hi)

P(x)

=
P(x | Hi)P(Hi)

P(x | H1)P(H1) + P(x | H2)P(H2)

=
P(x | Hi)P(Hi)

pX(x)P(H1) + qX(x)P(H2)

=

P(x|Hi)P(Hi)
qX(x)P(H2)

1 + pX(x)
qX(x)

P(H1)
P(H2)

From this we get

P(H1 | x) =

pX(x)
qX(x)

P(H1)
P(H2)

1 + pX(x)
qX(x)

P(H1)
P(H2)

P(H2 | x) =
1

1 + pX(x)
qX(x)

P(H1)
P(H2)

and therefore
P(H1 | x)
P(H2 | x)

=
pX(x)
qX(x)

P(H1)

P(H2)
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from which we can calculate the “log-odds" given by

log(
pX

qX
) = log(

P(H1 | x)
P(H2 | x)

) − log(
P(H1)

P(H2)
)

The right hand side of the above gives the difference, in log-odds, of the
hypothesis before and after measurement of X = x. Namely, it tells how our
odds for a given hypothesis are affected by a value obtained in a draw from
X. In this way the right hand side tells us how the information of observing
X = x can be used to discern distributions. In this way log( pX

qX
) tell us about

the information encoded in draws of X, which would allow us to help decide
whether X was distributed according to pX or qX , deciding in favour of H1

versus H2. This leads to the following definition

Definition 13: Relative Entropy

Let X be a random variable and let p, q be two density functions.
Then

EX∼p[log
p
q
] =

∫
R

p(x) log(
p(x)
q(x)

)dx

is the relative entropy between the distributions p, q. This is often
called the Kullback-Leibler divergence and denoted

DKL(p || q) � EX∼p[log
p
q
]

A few remarks are in order.

• If the measures induced by p and q agree up to sets of measure zero
then DKL(p || q) = 0. This means that the great agreement in induced
measures implies there’s no valuable information allowing one to discern
the true distribution of X.

• If X and Y are independent with respect to both p and q then

DKL(pXY || qXY) = DKL(pX || qX) + DKL(pY || qY)

• Although DKL(p || q) can be thought of as a kind of distance between
distributions, it strictly speaking isn’t. For one thing, it isn’t symmetric,
namely DKL(p || q) , DKL(q || p)

As an example of the utility of the relative entropy, we consider the following
situation: Suppose that we are given data X ∼ pX where we don’t know pX .
We’d like to be able to find a nice approximation or estimate, q of the true
data-generating distribution. This amounts to finding a q which is “as close
as possible" to pX , where closeness will be determined by the KL-divergence
between them. We’ll denote by Q a space of distributions from which we will
check various q’s. Then we may use

q∗ = arg min
q∈Q

DKL(p || q)
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Of course, we could also use

q̃∗ = arg min
q∈Q

DKL(q || p)

And, in general, q∗ and q̃∗ will not agree. To see why not, suppose that p
was a sum of two Gaussians with equal variance but unequal means, and
suppose that Q is equal to the set of all normal distributions. In other words,
we’re trying to find the best normal approximant to a bimodal sum of normals.
Then q∗ is obtained by averaging over both peaks (as the integral is calculated
by integrating against the bimodal distribution) whereas q̃∗ can be computed
by localizing around a single peak of pX as the remaining mass is small in q.
The choice of whether to use q∗ or q̃∗ is one of design and practicality. We
also remark that DKL(p || q) = −H(X ∼ p) −

∫
R

p(x) log q(x)dx. In other
words

−EX∼p[log q] = DKL(p || q) + H(X ∼ p)

We use the above to define the cross-entropy of p with q, given by

H(p, q) � −EX∼p[log q]

This becomes a commonly encountered quantity when we are performing
estimation of densities and finding q∗ as above, since

arg min
q∈Q

DKL(p || q) = arg min
q∈Q

(−H(X ∼ p) + H(p, q))

= arg min
q∈Q

H(p, q)

In other words, minimizing the KL-divergence amounts to minimizing
the cross-entropy between two densities.In practice, especially in machine
learning applications, the cross-entropy is therefore commonly encountered
as a loss function which is hoped to be minimized.

Some Inequalities

In the following theorem we present some of the most widely used inequali-
ties in probability theory.

Theorem 14

Let X and Y be random variables on probability space (Ω,F , P).
Then the following inequalities hold.

1. E|X + Y |r ≤ cr(E|X|r + E|Y |r), r > 0 with cr = 1 for r ≤ 1 and
2r−1 otherwise.

2. E|XY | ≤ (E|X|r)
1
r (E|Y |)

1
s for r > 1 and 1

r + 1
s = 1. This

is Hölder’s inequality and generalizes the Cauchy-Schwartz
inequality which occurs for r = s = 1

2 .
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3. f (EX) ≤ E f (X) for all convex functions f . This is known as
Jensen’s inequality.

4. Let φ be a non-decreasing, monotonic even function on [0,∞).
Then, for all a > 0 we have

P(|X| ≥ a) ≤
E[φ(X)]
φ(a)

This is known as Markov’s inequality.

Proof

We leave the first claim to be proven by the reader. For Hölder’s
inequality, we first notice that, for all positive numbers a, b we have

ar

r
+

bs

s
≥ ab

whenever 1
r + 1

s = 1. Now, set A = (E|X|r)
1
r and B = (E|Y |)

1
s . If

AB = 0 there’s nothing to prove as this forces |XY | = 0. Moreover, if
either of A or B is infinite the inequality is obvious. Thus, we assume
that 0 < AB < ∞. Now with a = |X|

A and B = |Y |
b we get

|XY |
AB
≤
|X|r

rAr +
|Y |s

sBs

Taking E of both sides of the above inequality yields the result.
For Jensen’s inequality we only give a sketch. For convex functions
we know that f (θx + (1 − θ)y) ≤ θ f (x) + (1 − θ) f (y) holds for
θ ∈ [0, 1]. Induction then gives that

f (
∑

i

θixi) ≤
∑

i

θi f (xi)

for all finite sums
∑

i θi = 1, θi ≥ 0. Proceeding in this way by
viewing θi’s as p(xi)’s completes a sketch of the main idea. Finally,
for Markov’s inequality, we let a > 0. Then

φ(a)1{|X|≥a} ≤ φ(|X|)1|X|≥a

φ(|X|)

≤ φ(X)

Thus

E[φ(a)1{|X|≥a}] ≤ φ(a)E1{|X|≥a}

= φ(a)P(|X| ≥ a)

≤ Eφ(X)

as was to be shown. �
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Conditional Expectation

In this section we present results in a quasi-rigourous way. Namely, to avoid
too many technical detours, we give some very hand-wavy justifications of
the main abstract constructions. The interested reader is advised to pick up a
copy of the book by Billingsley 9. 9 Patrick Billingsley. Probability and

Measure. WileyLet X and Y be two random variables on probability space (Ω,F , P).
Given a conditional density function p(x|y) on our variables we define
E[X|Y = y] to be

∑
x xp(x|y) in the case of discrete random variables or∫

R
xp(x|y)dx in the case of continuous variables. This definition gives us

the conditional expectation E[X|Y = y], as a function of the values the
conditioned-upon variable can take. Similar definitions hold for things like
E[ f (X)|Y = y] or when dealing with vector-valued random variables.

In the definition given above it’s clear that h(y) = E[X|Y = y] defines a
function of y (notice we’ve integrated out on X’s values). As it happens h(Y)
is a σ(Y)-measurable function. In other words, the conditional expectation is
itself a random variable (measured with respect to the information contained
in Y as dictated by it’s σ-algebra). Let’s investigate why this is so in a bit
more detail.

Consider the σ-algebra generated by the random variable Y ,

σ(Y) = {Y−1(B) | B ∈ B}

A theorem in mathematical analysis, the Radon-Nikodym theorem says the
following: If two measures µ and ν on a space (Ω,F ) satisfy10 ν << µ then 10 The notation ν << µ means, simply, that

µ(B) = 0 =⇒ ν(B) = 0 for all B ∈ Fthere exists a function f such that

ν(A) =
∫

A
f dµ

The function f is called the Radon-Nikodym derivative of ν with respect to µ,
denoted dν

dµ . Now, in the case at hand consider the measure

µY(A) �
∫

Y−1(A)
XdP

Clearly, here we have that P(Y ∈ A) =⇒ µY(A) = 0. Therefore µY << P

and the Radon-Nikodym derivate dP
dµY

exists. But that simply means that there

is a function ( dP
dµY

) let’s call g with the property that∫
Y−1(A)

XdP =

∫
A

gdµY

This function g is the conditional expectation E[X|Y ]. In other words∫
Y−1(A)

XdP =

∫
A

E[X|Y ]dµY

Notice that, provided X is σ(Y)-measurable, we have EX = E(E[X|Y ]).
This is also sometimes denoted

E[X|σ(Y)]
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where the more general form E[X|F ] for a σ-field F is like our best guess of
X given the information available in the σ-field F .

Example 15

If X is F -measurable then E[X|F ] = X.

Example 16

If, for all B ∈ R and all A ∈ F the random variable X has the property
that P({X ∈ B} ∩ A) = P(X ∈ B)P(A) holds, then we say that X is
“independent of F ". When this is the case we have∫

A
XdP = E[X1A]

= EXE1A

=

∫
A

EXdP

and so E[X|F ] = EX. This means, essentially, that if you have no in-
formation about F , your best guess for X is EX.

Example 17

Q: On every day except for Sundays, a train leaves the station every
s minutes. On Sundays it leaves every 2s minutes. You arrive at the
station not knowing anything about what time or day it currently is.
How long should you expect to wait until the next arrival?

A: For this, we set T = waiting time random variable. Then, we
know that

T |workdays ∼ p(t|workdays) =
1[0,s](t)

s

and

T |S unday ∼ p(t|S unday) =
1[0,2s](t)

2s
Then we have

E[T |Workday] =
∫

tp(t|workday)dt

=
1
s

∫ s

0
tdt

=
s
2

And also by similar reasoning we have ET |S unday] = 2s. Now also
P(workday) = 6

7 and P(S unday) = 1
7 . Thus, using marginals (make
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sure you can justify this!) we have

E[T ] = E[T |workday]P(workday) + E[T |S unday]P(S unday)

=
s
2

6
7
+ 2s

1
7

=
5s
7

You should expect to wait 5s
7 for the next train.

Example 18

Q: I roll a die and it comes up even. What’s the expected roll?

A: We have that E[roll|even] =
∑

roll∈{1,2,3,4,5,6} rollP(roll|even).
This is 1 × 0 + 2 × 1

3 + 3 × 0 + 4 × 1
3 + 5 × 0 + 6 × 1

3 = 4.

Example 19

Q: I roll a die until 6 appears. What should I expect for the sum of all
the rolls?

A: I’ll call S = sum of all the rolls. I will also label N as the number
of rolls it takes to hit a 6. As well, I’ll let Xi be the number obtained
on the i’th roll. Then, notice that E[S |N = n] is easy to compute
since E[S |N = n] = E(X1 + · · ·+ Xn) = nE[Xi] =

7n
2 . Thus,

E[S ] = E(E[S |N])

=
∑

n
E[S |N = n]P(N = n)

=
7
2

∑
n

nP(N = n)

=
7
2

EN

Notice that P(N = n) should be P(N = n, N , n − 1, N ,

n − 2, ..., N , 1). But the outcomes of the tosses are clearly inde-
pendent. Thus, the probabilities multiply and we get 1

6 (
5
6 )

n−1. This
gives then EN =

∑
n≥1

1
6 (

5
6 )

n−1n = 6. Therefore ES = 7
6 × 6 = 7.

Here we’ve used the result (see exercises) that for p ∈ (0, 1) we have∑
k≥1 kp(1 − p)k−1 = 1

p .

Characteristic Functions

We define a characteristic function of a random variable to be (inverse)
Fourier transform of the density function.



36

Definition 15: Characteristic Function

Given a random variable X ∼ pX(x) we define the characteristic
function of X to be

φ(t) � E[eitX ]

sometimes denoted φX(t).

If you are familiar with properties or uses of the Fourier transform, you
will know that the characteristic function therefore gives a spectral view
of the behaviour of a distribution. In this sense, it plays a dual role to the
“density-centric" view we’ve adopted thus far. We remark that

• φ(0) = 1

• φ(−t) = φ̄(t)

• |φ(t)| ≤ 1

holds for the characteristic function of any random variable.

Example 20

We consider a (variant of a) Bernoulli distributed random variable X
such that P(X = 1) = P(X = −1) = 1

2 . Then

φ(t) = E[eitX ]

= e−itP(X = −1) + eitP(X = 1)

= cos t

Example 21

We consider a standard normal random variable, X ∼ N(0, 1). Then

φ(t) =
∫

R

eitx 1
2π

e−
x2
2 dx

= e−
t2
2

∫
R

1
2π

e−
(x−it)2

2 dx

= e−
t2
2

since
∫

R
1

2πe−
(x−it)2

2 dx is the integral of a density of a N(it, 1) vari-
able. Put differently,

φN(0,1) = e−
t2
2

In general we have that φaX+b(t) = eitbφX(at). In other words, charac-
teristic function turns translations into unitary rotations and scaling in X to
scaling in the characteristic variable. From these considerations it’s easy to
see that

φN(µ,σ2)(t) = eiµt−σ
2t2
2
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In other words, normal distributions have the property that they look similar
on the spectral side to their form on the density side.

Some Limit Laws

We begin this section by introducing some notions of what it means for a
sequence of random variables to converge. The differing notions can be quite
subtle.

Definition 16: Convergence of Sequence of Random Variables

Consider random variables X1, ..., Xn on a probability space (Ω,F , P.
We say that

• The sequence converges to X almost surely, denoted Xn
a.s.
−−−→ X, if

P({ω | limn↗∞ Xn = X}) = 1

• The sequence converges to X in p’th mean, denoted Xn
Lp

−−→ X,
if limn↗∞E|Xn − X|p = 0, for p ≥ 1. This is what analysts
would call convergence in Lp. Lp(Ω) can be thought of as the set
{Y | E|Y |p < ∞}.

• The sequence converges to X in probability, denoted Xn
P
−−→ X, if,

given any ε > 0 we have limn↗∞P(|Xn − X| > ε) = 0.

• The sequence converges to X in distribution, denoted Xn
d
−−→ X or

FXn

d
−−→ FX if limn↗∞ FXn(x) = FX(x) for all x at which FX is

continuous.

We note that the different notions are related in the following ways.

Theorem 17

Consider random variables X1, ..., Xn on a probability space (Ω,F , P.
Then

1. Xn
Lp

−−→ X =⇒ Xn
P
−−→ X

2. Xn
P
−−→ X =⇒ Xn

d
−−→ X

3. Xn
a.s
−−→ X =⇒ Xn

P
−−→ X

Proof

To prove that convergence in the p’th mean implies convergence in
probability, we use Markov’s inequality with the function φ(x) = |x|p.
Namely, we have that

P(|Xn − X| > ε) ≤
E|Xn − X|p

ε p
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Taking limits proves the assertion. Next, to show that convergence in
probability is stronger that convergence in distribution we let ε > 0
and notice

FXn(x) = P(Xn ≤ x)

= P(Xn ≤ x, X > x + ε) + P(Xn ≤ x, X ≤ x + ε)

≤︸︷︷︸
think carefully

P(|Xn − X| ≥ ε) + P(X ≤ x + ε)

= P(|Xn − X| ≥ ε) + FX(x + ε)

Also, FXn(x) ≥ FX(x − ε) −P(|Xn − X| ≥ ε). Thus

FX(x − ε) ≤ lim inf
n↗∞

FXn(x) ≤ lim sup
n↗∞

FXn(x) ≤ FX(x + ε)

Taking ε small enough we get as tight an inequality as we want
proving the claim.
Lastly, we consider the more difficult claim: almost sure convergence
implies convergence in probability. We proceed as follows. First, for
all integers k > 0 define the sets

S k,l � ∩
∞
n=l{ω | |Xn − X| <

1
k
}

Then
{ω | lim

n↗∞
Xn(ω) = X(ω)} = ∩∞k=1 ∪

∞
l=1 S k,l

Therefore we see that P(∩∞k=1 ∪
∞
l=1 S k,l) = 1 ⇐⇒ Xn

a.s.
−−−→ X. No-

tice that

S k,l
l↑∞
↗
∪l≥1S k,l and ∪l≥1 S k,l

k↑∞
↘
∩k≥1 ∪l≥1 S k,l

In other words, we have

P(∪l≥1S k,l) = lim
k→∞

P(S k,l)

Since we have almost sure convergence we have that P(∩∞k=1 ∪∞l=1
S k,l) = 1 but ∪l≥1S k,l

k↑∞
↘
∩k≥1 ∪l≥1 S k,l shows that the sets ∪l≥1S k,l

get smaller as they approach the limit. Therefore we must have
P(∪l≥1S k,l) = 1 as the limit of 1 is approached from above. Thus, for
ε > 0 {ω | |Xn(ω) − X(ω)| ≥ ε} ⊂ {ω | |Xn(ω) − X(ω| ≥ 1

k } ⊂ Ω ∩ S c
k,l

whenever 1
k < ε and n ≥ l. This implies that

P({ω | |Xn(ω) − X(ω)| ≥ ε})
n→∞
−−−−→ 0

as desired.
�
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Now that we have introduced what it means for a sequence of random vari-
ables to converge to a random variable, we can now discuss some of the most
common laws surrounding limiting behaviour of random variables. We begin
with the laws of large numbers. In it we use the common convention that iid
is shorthand for independent, identically distributed. This assumption is
very often made on random variables up for consideration for limit laws.

Theorem 18: Laws of Large Numbers

Let X1, ..., Xn be iid random variables with means E[Xi] = µ and fi-
nite variance var(Xi) = σ2 < ∞. Define the sample mean random
variable

S n = Xn �
1
n

n∑
i=1

Xi

Then the following hold true.

• Weak Law of Large Numbers (WLLN): S n
P
−−→ µ

• Strong Law of Large Numbers (SLLN): S n
a.s
−−→ µ

In the above, the qualifiers “strong" and “weak" are obviously used
because of the prior theorem showing that almost sure convergence implies
convergence in probability. The above laws of large numbers are important
because they say that not only is the sample mean an unbiased (a term we’ll
explore later) estimator of the true mean of the random variables in question,
but it can be used to properly determine the true mean of the distribution from
which X1, ..., Xn are sampled from. It is one of the foundational results in
mathematical statistics. The other landmark result in mathematical statistics
and probability is the following version of the Central Limit Theorem (CLT).

Definition 19: Central Limit Theorem

Let X1, ..., Xn be iid random variables with means E[Xi] = µ and fi-
nite variance var(Xi) = σ2 < ∞. Define the sample mean random
variable, as before, as S n = Xn �

1
n
∑n

i=1 Xi. Then

√
n(S n − µ)

σ

d
−−→ N(0, 1)

Notice that the above shows that standard normal random variables are
somehow universal distributions. Under very weak assumptions on the
distribution underlying the samples Xi we can get an approximant of a
distribution of a standard normal.

Proof

Define Mn =
√

n(S n−µ)
σ = 1√

n

∑n
i=1 Zi where Zi = Xi−µ

σ . The Zi are
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also iid. Then

φMn(t) = E[eitS n ]

= E[e
it 1√

n
∑n

i= j Z j ]

= E[Πn
j=1ei t

n Z j ]

independence of Z′j s︷︸︸︷
= Πn

j=1E[ei t
n Z j ]

= Πn
j=1φZ j(

t
√

n
)

= (φZ j(
t
√

n
))n

Now, Taylor’s theorem gives us that φZ j(
t√
n
) = 1 − t2

2n + o( t√
n

3).
Therefore

φS n(t) = (1 −
t2

2n
+ o(

t
√

n

3
))n

n→∞
−−−−→ e−

t2
2

= φN(0,1)(t)

�

We mention without proof a version of the multivariate case of CLT.

Theorem 20: MultivariateWLLN and CLT

Suppose that X1, .., Xn are iid random vectors in Rk with mean vector
EXi = µ and covariance matrix Σ. Define the centroid random
variable Xn = 1

n
∑n

i=1 Xi. Then

• Xn
P
−−→ µ

•
√

n(Xn − µ)
d
−−→ N(0, Σ)

The central limit theorems tell us that when looking at averages over
independent samples, one should expect to see a normal distribution. One
very useful application of this is to noise in data. Noise is often the result of
several corrupting influences on the data acquisition or generation process
averaged out. So, a priori we ought to expect that noise in our data should
follow a Gaussian distribution. We’ll have more to say on this when we
discuss Bayesian models of inference. Note that the central limit theorem
allows us to treat the sample mean as a modification of a standard normally
distributed variable viz

Xn ≈
σ
√

n
Z +

µ
√

n
, Z ∼ N(0, 1)
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i.e. Xn ≈ N( µ
√

n
, σ

2

n ).

Exercises

1. Show that the probability of finding at least one success in a time interval
of length t of a Poisson-distributed random variable is 1 − e−λt.

2. Prove that a pdf pX must satisfy the normalization condition
∫

R
pX(x)dx =

1.

3. Prove equation (0.0.1)

4. Prove that the components of X ∼ N(µ, Σ), an n-dimensional Gaussian
distributed random vector are independent if and only if Σ is diagonal.

5. Prove that the correlation coefficient ρXY satisfies |ρXY | ≤ 1 for all random
variables X and Y .

6. Give an example, with proof, of two non-independent, uncorrelated
random variables.

7. Show directly that var(aX + bY) = a2var(X)+ b2var(Y)+ (2ab)cov(X, Y)
for all a, b constant and random variables X and Y .

8. Verify that for X ∼ N(µ,σ2), EX = µ and var(X) = σ2.

9. Prove the first inequality in Theorem 14.

10. Given a random variable Y , verify that σ(Y) as defined by {Y−1(B) | B ∈
B} is in fact a σ-algebra.

11. Prove that for p ∈ (0, 1) we have
∑

k≥1 kp(1 − p)k−1 = 1
p

12. Verify that for X ∼ pX taking outcomes {X1, ..., XN} with pX(X = Xi) =
1
N we have H(X) = log2 N.

13. In the section of joint entropy we considered X and Y such that X takes
one of 8 possible outcomes with equal likelihood and Y takes one of 4
probabilities with equal probability and upon any observation of the pair
we saw that either both X and Y were odd or both were even. Prove that
this implies H(X, Y) = 1.

14. Prove that I(X, Y) = 0 ⇐⇒ X |=Y

15. Prove that I(X, Y) = DKL(pXY || pX pY)

16. Prove that if X and Y are independent with respect to both p and q then
DKL(pXY || qXY) = DKL(pX || qX) + DKL(pY || qY)

17. Prove that φ(0) = 1, φ(−t) = φ̄(t) and |φ(t)| ≤ 1 holds for the
characteristic function of any random variable.
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18. Calculate the characteristic function of a uniformly distributed random
variable X ∼ U(−a, a), a > 0.

19. In the proof of the central limit theorem we used the fact that if X1, ..., Xn

are iid then so is Z1, ..., Zn for Zi =
Xi−µ
σ . Prove this.
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In this chapter we cover the tools for making inference about distributions
given access to values of random variables in a data set. We cover quantita-
tive bounds which control accuracy and confidence in our estimators. These
tools are fundamental to making reasonable assertions regarding distributions
which we can only access via limited samples of random variables.
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Introduction

The purpose of this chapter is to address what is one of the fundamental
questions a data scientist can be asked to consider: given the values of
numbers in a data set (which we will interpret as realizations of a random
variable) what can we deduce about the data-generating distribution? Put
formally, a data set is a collection of numerical values D = {x1, ..., xn}

which we assume is of the form {X(ω1), X(ω2), ..., X(ωn)}. Of course, things
could be even more complicated, and the data could be instead samples from
differently distributed random variables, namely {X(ω1), Y(ω2), ..., Z(ωn)}.
Based solely on the numbers, we’d like to understand the nature of the
randomness which they are instantiations of. Broadly speaking, we can go
about this along one of two lines.

1. Parametric: This is where we will assume a function form of the un-
known distribution. The functional form will depend on some parameters
which we then want to determine. In general this means we have a density
of the form p(x | θ) where theta is (possibly a vector of) parameters of the
distribution in question.

2. Non-Parametric: This is the case in which no assumptions are made
about the functional form of the data-generating distribution. In this case
the “data speaks for itself" and guides the inferential process.

Of course the non-parametric view is still parametric. It’s simply that in this
case the parameterization is in an infinite, rather than a finite, dimensional
space.

Our approach will often be based on variants of a decision function,
d = d(x1, ..., xn). This decision function is a tool for dividing up the space
of variates and even will help for testing hypotheses. For instance, if we
were looking at the final exam of only five students in a class of 100, we
might want to know if we could determine whether the class average will be
above 60%. In this case d(x1, ..., x5) ∈ {0, 1} where 0 represents an answer
of “no" and 1 represents the answer “yes". Notice that d divides R5 into two
distinct regions, each of which corresponds to one of the two answers. Those
regions, the level sets of d in this instance, are known as decision regions
for the decision problem of determining whether or not the class average is
above a 60%. When d : Rn → M with #M > 2 we have what is called a
multiple decision problem involving discrimination among various answers.
Perhaps, for example, rather than asking just about the class average I wanted
to know about whether the class will have students whose grades fall into
each of the regions [50, 59), [60, 69), [70, 79), .... It may also be the case
that we are trying to decide on the value of a continuous rather than discrete
variable. Namely, we could have d(x1, ..., xn) = θ where θ can take values in
a continuous region. Namely, the decision function is simply our estimate of
the parameter θ. This will be the situation in most of our analysis.
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Elementary Decision Theory

We are going to want to penalize incorrect decisions. We do this via a loss
function

L(θ, a)

where θ represents the true (unknown) parameter we are wanting to estimate
and a represents a decision made or action taken. For example, we could have
L(θ, a) = |a − θ| or L(θ, a) = ||a − θ||2. The loss depends upon the decision
function since we make our decisions a based on the output of decision
function. So, in this way, we have

L = L(a, d(x1, ..., xn))

But we don’t want our penalization, or our decision, to be based just on
a single observation set {x1, ..., xn}. Rather, decisions should be based on
overall performance. Namely, we have a random variable d(X1, ..., Xn)

leading to the loss random variable

L(θ, d(X1, ..., Xn))

The overall effectiveness of our decision function should be based on how
well we expect to do, namely we should base our valuation of our model
decision on a risk function

R(θ, d) = E[L(θ, d(X1, ..., Xn))]

where, in the above, the expected value is with respect to the joint distribution
over X1, ..., Xn, not over θ. Of course, if our sample {x1, ..., xn} respresents
realizations of iid draws of a variable X ∼ p(x | θ) then we have

R(θ, d) =
∫

Rn
L(θ, d(x1, ..., xn))Πn

i=1 pXi(xi | θ)dx1 · · · dxn

To figure out which of competing decision functions should be used in a
given problem we turn to the minimax decision function, d∗ defined by

d∗ = arg min
d∈D

(max
θ
R(θ, d))

whereD is a space of competing decision functions.

Example 22

We try to estimate parameter θ = λ from a single observation of X ∼
Pois(θ). Namely p(x | θ) = e−θθx

x! . Given only a single observation
we try a linear function d(x) = cx with unknown c. In addition, we
will use the quadratic loss function

L(θ, d) =
(d − θ)2

θ
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Then

R(θ, d) = EX [L(θ, d)]

=
∑

x
L(θ, d(x))p(x | θ)

=
1
θ

∑
x
(cx − θ)2 e−θθx

x!

But (cx − θ)2 = c2

θ {(x − θ)2 + 2θ(1− 1
c )(x − θ) + θ2(1− 1

c )
2}. There-

fore

R(θ, d) =
c2

θ
(var(X) + 2θ(1 −

1
c
)E(X − θ) + θ2(1 −

1
c
)2)

= c2 + θ(c − 1)2

From this we see that if c = 1 then R(θ, d) ≡ 1 whereas if c , 1
then R is unbounded in θ. Therefore d(x) = x is the best minimax
decision function estimator of the mean of a Poisson distributed
random variable.

The Bayesian view we discussed in the previous chapter essentially comes
down to modelling all unknowns as random variables. Therefore we imagine
that an unknown parameter θ follows a distribution θ ∼ p(θ). This Bayesian
interpretation of dealing with unknowns leads to the Bayes Risk function

r(p, d) � E[R(θ, d)] =
∫
R(θ, d)p(θ)dθ

Notice the difference with the risk function discussed previously. In this
instance the Bayes risk averages over all values of the unknown parameter
which one expects to encounter provided the parameter is a random variable
drawn from the distribution in question. The Bayes risk helps us pick our
decision function accordingly; we choose the Bayes decision function

b = arg min
d∈D

r(p, d)

Example 23

As before we will try to estimate the mean of a Poisson-distributed
random variable given a single observation. We assume θ ∼ e−θ for
θ > 0. Then

r(p, d) =
∫ ∞

0
[c2 + θ(c − 1)2]e−θdθ

= c2 + (c − 1)2

Minimization with respect to c gives c = 1
2 . Namely, d(x) = x

2 is the
Bayes decision function. Notice this is decidedly different than the
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decision function we obtained earlier using minimax.

Of course, the estimator we obtain implicitly depends on the choice of
loss function we use. We’ve used in the past two examples the very common
quadratic loss. This is a popular choice because it allows for the use of
convex optimization routines to find the minima. We refer to the risk when
using a quadratic loss function as the MSE or mean squared error of our
decision.

Predictors

In doing work on machine learning we’ll be trying to predict outcomes Y
based on inputs X, where both are assumed to be random variables. In this
setting we view Y = f (X) and we try to learn (in a way made precise
later) the function Y which behaves well. Of course, when doing prediction
we’re still doing decision problems so we have a loss here. In the context of
machine learning the loss function is also called a cost function. We may use
the quadratic cost, say, which takes the form

L(Y , f (X)) = (Y − f (X))2

When evaluating how well our prediction predicts we care about a expected
prediction error associated to the decision function f , EPE( f ), defined by

EPE( f ) = E[L(Y , f (X))] =
∫

R2n
|y − f (x)|2 p(x, y)dxdy

It’s easy to verify that

EPE( f ) = E[E[(Y − f (X))2 | X]]

Thus, we can be sure a minima of EPE( f ) by selecting the decision funcion

f (x) = arg min
c

E[(Y − c)2 | X = x]

which is a pointwise minimizer. A calculation shows this give the regression
function

f (x) = E[Y | X = x]

Thus, conditional expectation gives an optimal prediction (the regression
function) which is a type of decision function used in making predictions
which should generalize well. One example of this is that if we were given
a new input on which we wished to predict, we might take the average over
nearby y’s, via

f̂ (x) = Ave(yi | xi ∈ Nk(x))

where Nk(x) is the neighbourhood around x containing the k nearest points to
x. This regression function gives rise to a method called k-nearest neighbours,
kNN, regression. We note that in kNN described here that



48

• The expected value operator is replaced with a average on sample data

• Conditioning on x is replaced with conditioning on a region close to x

Of course, as the dimension of the xi’s gets large the size of Nk(xi) must
increase by an enormous factor leading to computational issues which we
don’t address.

Estimators

From now on we’re going to be adopting the following conventions.

• We use the word “density" and “pdf" even in cases of discrete random
variables

• We wish for the random variable d = d(X1, ..., Xn) to be estimate a
parameter θ (or parameters whenever θ is vector valued) in a distribution
f (x | θ) (notice we are now generally using f to denote the density rather
than p). We say that d is an estimator of θ and write d(x1, ..., xn) = θ̂.

• We often use the quadratic loss funciton L(θ, d) = (d − θ)2 and the risk
function R(θ, d) = EL(θ, d), i.e MS E = MS E(θ̂).

As an easy warm-up, we consider the case where X ∼ N(θ, 1), i.e. we’re
trying to estimate the mean of a normally distributed random variable, and

here f (x | θ) = 1√
2π

e−
(x−θ)2

2 . Of course, the intuition given to use the by
Strong Law of Large Numbers is that we should use

d1(X1, ..., Xn) = X =
1
n

n∑
i=1

Xi

But we will compare this against d2(X1, ..., X2) ≡ 1. If it turns out that θ = 1
then R(θ, d2) = 0 whereas

R(θ, d1) = E[(d1 − θ)
2]

= E[(X − θ)2]

= var(X)

= var(
X1

n
+ · · ·+

Xn

n
)

=
nvar(X1)

n2

=
1
n

In other words, R(θ, d1) > R(θ, d2). In other words, d2 is better in this
instance (although, obviously, not very robust!) This illustrates the need for
us to be careful in working out which estimators to use in any instance.

Bias, Variance, and the Bias-Variance Trade-off

We begin with a commonly encountered notion in parameter estimation.
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Definition 21: Bias of an Estimator

An estimator d(X1, ..., Xn) has bias given by

Bθ̂(θ) � E[d(X1, ..., Xn) − θ]

If Eθ̂ = θ we say that θ̂ = d(X1, ..., Xn) is an unbiased estimator.

Notice the convention of treating the bias as a function of the true param-
eter θ rather than of the estimate θ̂. The above indicates that an estimator is
unbiased if it’s “correct on average". Related to the concept of bias is the
concept of variance of an estimator.

Definition 22: Variance of an Estimator

An estimator θ̂ = d(X1, ..., Xn) has variance given by

Vθ̂(θ) � Eθ(θ̂ −Eθ̂)2

Given these definitions of bias an variance we can look at the MSE (i.e.
the risk under quadratic loss function),

Eθ[(θ − θ̂)
2] = Eθ[((θ −Eθ̂) + (Eθ̂ − θ̂))2]

= Eθ[(θ −Eθ̂)2] + 2Eθ[(θ −Eθ̂)(Eθ̂ − θ̂)] + Eθ[(Eθ̂ − θ̂)
2]

But notice that (θ −Eθ̂) is a constant so 2Eθ[(θ −Eθ̂)(Eθ̂ − θ̂)] = 2(θ −
Eθ̂)Eθ(Eθ̂ − θ̂) = 2(θ −Eθ̂)(Eθ̂ −Eθ̂) = 0. Therefore we have

MS E(θ̂) = Eθ[(θ −Eθ̂)2] + Eθ[(Eθ̂ − θ̂)
2]

= (θ −Eθ̂)2 + Eθ[(Eθ̂ − θ̂)
2]

= B2
θ̂
(θ) + Vθ̂(θ)

In other words
MS E = (bias)2 + variance

Which is known in the field as the bias-variance trade-off. This means that,
when using the MSE to score a predictor, one can improve by trying to lower
the bias or lower the variance. A corollary of the bias-variance trade-off is
that when using unbiased estimators, one can only improve by reducing the
variance. Various values of MSE may find

• Regions of low variance but high bias. This indicates a simple model,
since the estimator cannot vary enough to the complexity in the samples.

• Regions of low bias but high variance. This indicates a high amount of
model complexity, since the estimator may be able to adapt to fluctuations
and noise in the samples.

• Regions with a bit of variance and bias. In these regions generally the
MSE will be lowest and there is enough complexity to model the random-
ness but not enough to get stuck modelling the noise in the samples.
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We remark that the bias and variance both depend on the unknown parameter
θ.

Example 24

Consider Xi ∼ B(p), iid coin flips. Denote by n the number of heads
obtained in N tosses. Then

E[
n
N
] =

1
N

E[binomial variable B(N, p)]

=
1
N

N p

= p

Thus, the random variable n
N is an unbiased estimator of the parame-

ter p. Similarly

Vθ̂(θ) = varB(N,p)(
n
N
)

=
1

N2 varB(N,p)(n)

=
N p(1 − p)

N2

=
p(1 − p)

N

Thus, the variance of the estimator decreases in N, meaning that the
estimate becomes more and more reliable the larger the number of
draws taken.

One common heuristic for selecting estimators, beyond the minimax or
Bayes, is to select among unbiased estimators. Thus, we may be looking to
select optimal unbiased estimators, where optimality will be made precise in
given contexts.

Consistency

By consistency of an estimator θ̂n = d(x1, ..., xn) we mean that

θ̂n
a.s
−−−−→
n→∞

θ

So, for example, the Strong Law of Large Numbers implies that Xn, the
sample mean, is a consistent estimator of the true mean, E[X], i.e.

Xn
a.s.
−−−−→
n→∞

E[X]

We say that the sample mean is consistent and unbiased. On the other hand,
the sample variance

σ̂2 �
1
n

n∑
i=1

(Xi − X)2
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is biased and consistent. To see this, observe that

nσ̂2 =
∑

i

(Xi − X)2

=
∑

i

X2
i −

2
n

∑
i, j

XiX j +
n
n2

∑
j,k

X jXk

=
∑

i

X2
i −

1
n

∑
i, j

XiX j

Which means that nEσ̂2 =
∑

i EX2
i −

1
n
∑

i, j E[XiX j]. Now, in the second
sum, when i = j the summands become terms like E[X2

i ] = µ2, the
second moment of random variable X.11 When i , j we obtain terms like 11 The n’th moment of X is EXn, so, e.g.

the first moment is the mean. These are
sometimes called the moments about zero

E[XiX j] = EXiEX j = µ2. Then

nEσ̂2 = nµ2 −
1
n
{nµ2 + n(n − 1)µ2}

= (n − 1){µ2 − µ
2}

= (n − 1)σ2

From this we see that the bias of the sample variance is

Bσ̂2(σ2) = −
σ2

n

Notice that this implies

E[
n

n − 1
σ̂2] = σ2

so that n
n−1 σ̂

2 is an unbiased sample variance which can be written

σ̂2
unbiased = σ̂2

u =
1

n − 1

∑
i

(Xi − X)2

One should use caution in relying on software packages to calculate the
sample variance since some calculate the unbiased version while others
calculate the biased version. In other words, there is no universal agreement
as to which should refer to “the sample variance". Despite it being biased, the
sample variance is clearly consistent, since

σ̂2
n = X2 − X

2

so the Strong Law of Large Numbers dictates12 that 12 Here we are using the fact that if Xn
a.s.
−−−−→
n→∞

X the g(Xn)
a.s.
−−−−→
n→∞

g(X) for continuous g.
σ̂n

a.s.
−−−−→
n→∞

EX2 − (EX)2 = σ2

The sample variance is therefore biased and consistent or, put differently,
wrong on average but right eventually.
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Minimum Variance Estimators

An unbiased estimator possessing least variance among the class of unbiased
estimators should be deemed “best" since it will then minimize the MS E.
This ideal estimator is called the MVU or minimum variance unbiased
estimator. Notice our precision is inversely proportional to the spread in our
estimator and therefore is

1
Vθ̂(θ)

since variance represents a spread in certainty. In this way, high variance
means low precision and low variance means high precision. Unbiased
estimators therefore give us a benchmark from which to compare among
estimators. Suppose that d∗ = MVU for a parameter θ and let d be any other
estimator for θ. The ratio

E f f (θ, d) �
Vd∗(θ)

Vd(θ)

is called the efficiency of the estimator d. If Vd∗ (θ)
Vd(θ)

were, say, .83 then we
would say “d is 83% efficient". In a sample of size n, we suppose that an
unbiased estimator was of the form

V(d) =
c
n

as is common in practice. Then if d were 80% efficient we’d have V(d∗) =
.8c
n . This would mean that a sample of size 80 with d∗ is as good as a sample

of size 100 with d. In other words the efficiency E f f (θ, d) helps to determine
the optimal sample size for a given level of precision. In this way, efficiency
is a measure of “bang for your buck" where bucks are measured in units
of data. One issue with the MVU however, is that we don’t know the true
value θ, or even whether or not an MVU exists. This issue we address in the
following section.

A Priori Estimates on Unbiased Estimators

As noted in the last section, we often don’t know whether an MVU even
exists, let alone how to construct one. To circumvent this, we’d like to get
some a priori estimates on the variance of a given unbiased estimator. If we
could come up with a universal a priori lower bound on unbiased estimators
then any estimator which saturated the bound would clearly be worthy of the
title “best". To attack this problem we introduce a few necessary terms.

• Given iid data {x1, ..., xn} assumed draws from Xi ∼ f (x | θ), we define the
likelihood function

L(θ) � Πn
i=1 f (xi | θ)

This is the probability of observing the sample for a given choice of θ.
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• Since the likelihood is a product it can often be easier to works with it’s
logarithm. We define the log-likelihood function

l(θ) = log L(θ)

• The Fisher score is given by

s(θ) = l′(θ)

or, in the case of vector parameters s(θ) = ∇θl(θ). It can tell the sensitiv-
ity of the sample to changes in the parameters. In other words the Fisher
score is a

• The Fisher Information Measure FX is

FX(θ) = Eθ[(∇θ f (x | θ))2]

In the case of scalar parameters we have

FX(θ) = E[l′(θ)]

For a single sample, this is also often denoted by I(θ). For iid samples we
have then that FX(θ) = nI(θ).

Exercises

1. Prove that E[Y | X = x] = arg minc E[(Y − c)2 | X = x].
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