Let $T \in \mathcal{L}\left(\mathbb{C}^{3}, \mathbb{C}^{3}\right)$ be defined by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{2}, z_{3}, 0\right)$. Prove that T does not have a square root. More precisely, prove that there does not exist an $S \in \mathcal{L}\left(\mathbb{C}^{3}, \mathbb{C}^{3}\right)$ satisfying $S^{2}=T$.

