Let V be a finite dimensional inner product space with inner product $\langle\cdot, \cdot \cdot\rangle$. Suppose that P : $V \rightarrow V$ is linear, satisfies $P^{2}=P$ and also satisfies $\langle P v, w\rangle=\langle v, P w\rangle$ for all $v, w \in V$. Prove that there exists a subspace $W \subset V$ such that $P=P_{W}$, i.e. P is an orthogonal projection onto subspace W.

